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Abstract We study hydrogen in the Saha regime, within the physical picture in terms of a
quantum proton-electron plasma. Long ago, Saha showed that, at sufficiently low densities
and low temperatures, the system behaves almost as an ideal mixture made with hydrogen
atoms in their groundstate, ionized protons and ionized electrons. More recently, that re-
sult has been rigorously proved in some scaling limit where both temperature and density
vanish. In that Saha regime, we derive exact low-temperature expansions for the pressure
and internal energy, where density ρ is rescaled in units of a temperature-dependent density
ρ∗ which controls the cross-over between full ionization (ρ � ρ∗) and full atomic recom-
bination (ρ � ρ∗). Each term reduces to a function of ρ/ρ∗ times temperature-dependent
functions which decay exponentially fast when temperature T vanishes. Scaled expansions
are ordered with respect to the corresponding decay rates. Leading terms do reduce to ideal
contributions obtained within Saha theory. We consistently compute all corrections which
are exponentially smaller by a factor exp(βEH) at most, where EH is the negative ground-
state energy of a hydrogen atom and β = 1/(kBT ). They include all effects arising from both
the Coulomb potential and the quantum nature of the particles: excitations of atoms H , for-
mation of molecules H2, ions H+

2 and H−, thermal and pressure ionization, plasma polariza-
tion, screening, interactions between atoms and ionized charges, etc. Scaled low-temperature

A. Alastuey (�)
Laboratoire de Physique, Université de Lyon, ENS Lyon, CNRS, 46 allée d’Italie, 69364 Lyon
Cedex 07, France
e-mail: angel.alastuey@ens-lyon.fr

V. Ballenegger
Institut UTINAM, Université de Franche-Comté, CNRS, 16 route de Gray, 25030 Besançon
Cedex, France

F. Cornu
Laboratoire de Physique Théorique, Université Paris-Sud, CNRS, Bâtiment 210, 91405 Orsay
Cedex, France

Ph.A. Martin
Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, 1015
Lausanne, Switzerland



1120 A. Alastuey et al.

expansions can be viewed as partial resummations of usual virial expansions up to arbitrary
high orders in the density.

1 Introduction

Hydrogen is an important element, both at a theoretical level and for practical purposes.
Here, we consider a non-relativistic quantum hydrogen plasma, made of protons and elec-
trons with respective masses mp and me , which interact via the familiar 1/r-Coulomb po-
tential (see Sect. 2.1). As far as thermodynamic properties of that system are concerned, an
exact calculation at finite temperature T and finite density ρ, remains far beyond present hu-
man abilities. Nonetheless, by exploiting the exact knowledge of the spectrum of hydrogen
atom and using Morita’s method [51], Ebeling [23] first computed low-density expansions
for pressure and free energy up to order ρ2 at fixed non-zero temperature, in a closed analyt-
ical form (see also Ref. [39]). When ρ goes to zero, the system becomes fully ionized (see
Ref. [43] for a rigorous proof). At order ρ2, the recombination of a small fraction of charges
into hydrogen atoms is exactly taken into account. Such low-density expansions have been
more recently completed up to order ρ5/2 [4–7]. Those results have been checked afterwards
in Ref. [37], and their high-temperature form in the one-component case does coincide with
that derived in Ref. [20]. In the opposite limit where ρ goes to infinity at zero temperature,
the system behaves as a mixture of free Fermi gases, and expansions in inverse powers of ρ

have been calculated (see Refs. [29] and [50] for the first calculations in the one-component
case, and also Ref. [39] for similar works or extensions).

The previous exact asymptotic expansions are suitable for regimes where the system is
almost fully ionized. The purpose of the present paper is to derive a similar expansion in
the so-called Saha regime, where a non-vanishing fraction of charges is recombined into hy-
drogen atoms. That regime was introduced long ago [60] in the framework of the chemical
picture. Assuming that the system is an ideal mixture of protons, electrons, and hydrogen
atoms, its composition is then determined by applying the usual mass action law [26]. More
recently, by starting from the physical description of the system in terms of a quantum
plasma, it has been proved through successive works by Fefferman [27], Lieb et al. [18],
Macris and Martin [45], that Saha approach is asymptotically exact in a scaling limit mix-
ing the temperature and the chemical potential (see Sect. 2.2). As argued in Sect. 2.3, that
limit defines quite diluted and low temperature conditions, namely the Saha regime, under
which non-ideal contributions are small perturbations. In order to compute the correspond-
ing contributions, we consider a formalism that combines the path integral representation
of a quantum gas to familiar Mayer diagrammatics (see Sect. 2.4). Our key starting point
in that framework is the so-called screened cluster expansion (SCE) of particle densities in
terms of fugacities [8], which turns to be quite appropriate for studying recombined phases
as illustrated in Refs. [10–12] (dielectric response of an atomic gas) or [9] (partial screen-
ing of van der Waals forces by free charges). The physical content of SCE is close to ideas
first introduced by Rogers [54] for describing atomic or molecular recombination within
the physical picture. In that approach, virial coefficients are numerically estimated within
a priori modelizations, which incorporate quantum effects at short distances and classical
Debye screening at large distances. The corresponding so-called ACTEX method has been
developed through successive works [55, 56, 58, 59]. It has also been applied to hydrogen
[57], with quite good results at low and moderate densities as described in Ref. [48]. Nev-
ertheless, in the Saha regime, exact asymptotic expansions with analytical prescriptions for
computing the successive terms, have not been derived within ACTEX method.
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In Sect. 3, using the parametrization of chemical potential in terms of temperature in-
troduced in Ref. [45], we show that every contribution in SCE of particle densities, decays
exponentially fast when T goes to zero. Thanks to available inequalities for the spectrum of
the considered Coulomb Hamiltonian, we extract the leading terms which do arise from free
(ionized) protons and electrons, as well as from atoms H in their groundstate with energy
EH = −me4/(2�

2) where m is the reduced mass m = mpme/(mp + me). Next corrections
are ordered with respect to their decay rate in the zero-temperature limit. They account for a
large variety of physical effects: plasma polarization, formation of molecules H2, ions H+

2
and H−, interactions between ionized charges and Hydrogen atoms. Such corrections are
defined without any ambiguity or a priori modelizations, so they do not depend on any ad-
justable phenomenological parameter. In particular, SCE provides well-behaved expressions
for the partition functions of a molecule H2 or ions H+

2 and H− in the vacuum, which are
the generalizations of quantum virial functions for the hydrogen atom [23] to more complex
entities. Notice also that ionic contributions to charge neutrality or screening are consistently
incorporated, as it should.

The equation of state (EOS) is derived by using thermodynamic identities in Sect. 4. This
leads to our main result, namely scaled low-temperature (SLT) expansion of the pressure P

around ideal Saha pressure

βP/ρ∗ = βPSaha/ρ
∗ +

∞∑

k=1

βPk/ρ
∗, (1.1)

considered as a function of the temperature and of the dimensionless density variable ρ/ρ∗

where ρ is the electron number density (which is equal to the proton number density by
neutrality). The temperature-dependent reference density ρ∗ defined by

ρ∗ = exp(βEH )

2(2πλ2
pe)

3/2
with λpe = (β�

2/m)1/2, (1.2)

determines the cross-over between full ionization for ρ � ρ∗, and full recombination for
ρ � ρ∗ (see Sect. 2.2). Since EH is negative, EH � −13.6 eV, ρ∗ decays exponentially fast
at low temperatures. In expansion (1.1), it is convenient to express the pressure in units of
kBTρ∗ which turns out to be the natural reference pressure in the Saha regime. Then, each
term in (1.1) is dimensionless. The first term is the usual Saha pressure expressed in terms
of ρ/ρ∗

βPSaha/ρ
∗ = ρ/ρ∗ + (1 + 2ρ/ρ∗)1/2 − 1. (1.3)

We see indeed that for ρ � ρ∗, the system becomes fully ionized (βPSaha ∼ 2ρ), whereas for
ρ � ρ∗ all ionized charges recombine into neutral hydrogen atoms (βPSaha ∼ ρ). Each term
in expansion (1.1) beyond that leading ideal contribution has the form of a non-linear func-
tion of ratio ρ/ρ∗, times a temperature-dependent function hk(β) (or possibly a polynomial
in the hl(β), l ≤ k). The hk(β) decay exponentially fast when T vanishes and are ordered
with respect to their decay rates hk(β) ∼ e−βδk , 0 < δ1 < δ2 < · · ·. Hence the expansion
(1.1) is organized as a series of exponential terms with increasingly faster exponential decay
as T → 0. The hk-functions and their decay rates are governed by a balance between en-
ergy and entropy involving the ground-state energy E

(0)
Np,Ne

of Coulomb Hamiltonian HNp,Ne

for Np protons and Ne electrons in mutual interaction. We determine the pressure in the
Saha regime by computing exactly all terms in expansion (1.1) smaller than leading ideal
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contribution βPSaha/ρ
∗ of order 1 by exponentially decaying factors of maximum order

exp(βEH). We find

βPk/ρ
∗ = (function of ρ/ρ∗) × hk(β), hk(β) ∼ e−βδk , k = 1,2,3,4,

βP5/ρ
∗ = (function of ρ/ρ∗) × [h1(β)]2

(1.4)

with (δk in electronvolt units, E
(0)

2,1 = EH+
2

, E
(0)

1,2 = EH− , E
(0)

2,2 = EH2 )

δ1 = |EH |/2 � 6.8,

δ2 = |3EH − EH2 | � 9.1,

δ3 = 3|EH |/4 � 10.2,

δ4 = |2EH − EH+
2
| � 11.0.

(1.5)

The explicit forms of the density-dependent functions and of the hk(β) can be found in
Sects. 4.1 and 4.2 together with a discussion of their interpretation and relative importance
in different density and temperature regimes. In short, the hk-functions incorporate various
corrections to the ideal Saha term which can be described by

• h1(β): plasma polarization around ionized charges
• h2(β): formation of H2 molecules and atom-atom interactions
• h3(β): atomic excitations and interactions between ionized charges
• h4(β): formation of H+

2 and H− ions, atom-charge interactions, and screening of atomic
groundstate

The construction of SLT expansion (1.1), defined by taking the zero-temperature limit at
fixed ratio ρ/ρ∗, is itself an important new result. It provides a non-trivial structure for the
various corrections to ideal Saha pressure, which are properly ordered in that scaling limit.
It turns out that keeping only the first correction βP1/ρ

∗, is equivalent to a modification
of the Saha ionization rate which has been derived previously by several authors (see e.g.
[41] and references quoted in [39]). To our knowledge, next terms βPk/ρ

∗ (2 ≤ k ≤ 5) are
entirely new, and do not have counterparts in the literature. We provide their exact expres-
sions, which involve suitably truncated few-body partition functions. Two-body truncated
partition functions are merely related to quantum virial functions first introduced by Ebel-
ing (see e.g. [39] and references quoted therein). Three- and four-body truncated partition
functions are introduced and defined here for the first time. Previous terms (2 ≤ k ≤ 5) also
account, beyond standard calculations, for interactions between recombined entities as well
as screening effects. For instance, contributions of atom-atom interactions in βP2/ρ

∗ are
evaluated without any a priori modelization, while screening of atomic groundstate embed-
ded in βP4/ρ

∗ incorporates further corrections to the familiar Debye shift.
Corrections in SLT expansion (1.1) are ordered with respect to their decay rates when

the temperature vanishes at fixed ratio ρ/ρ∗. The behavior of such corrections along a given
low-temperature isotherm when the density is varied, displays some interesting physics.
For very small densities ρ � ρ∗, all density-dependent functions in front of the h′

ks can
be expanded in powers of ρ. Then, we retrieve the well-known virial expansion at fixed
temperature up to order ρ2 included (see Sect. 4.2). In particular, the leading correction of
order ρ3/2 is the familiar classical Debye term arising from the polarization contribution
βP1/ρ

∗. When the density is increased, virial density-expansion can no longer be used, but
SLT expansion still works and accounts for non-perturbative effects with respect to finite
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values of ρ/ρ∗. Up to moderate densities ρ � ρ∗, βP1/ρ
∗ remains the leading correction to

ideal Saha terms. Interestingly, that polarization contribution is reduced at higher densities
ρ � ρ∗ because most protons and electrons are recombined into atoms H . Then, molecu-
lar contributions embedded in βP2/ρ

∗ provide the first correction to Saha pressure, since
they also overcome contributions of atom-atom interactions, at least for a sufficiently low
temperature isotherm. Ultimately, they are responsible for the breakdown of expansion (1.1)
at too large densities. Our results clearly provide a better analytical knowledge of the ther-
modynamics in an extended part of the phase diagram, as illustrated by the validity domain
drawn in Fig. 12 of Sect. 4.3. The SLT expansions can be viewed as infinite resummations
of low-density expansions.

We emphasize again that the EOS (1.1) incorporates the screening effects in a coher-
ent and consistent way for the whole range of densities ρ � ρ∗ (strongly ionized gas) and
ρ � ρ∗ (recombined gas). When the interaction is Coulombic, one has to face the diver-
gence of the sum of bound state contributions to the partition function of an isolated atom
arising from the infinite number of Rydberg states. That important and well-known problem
is usually dealt with the Planck-Larkin prescription to cut off states of energies En larger
than kBT (see e.g. the discussion in [24]). In our implementation of the physical picture
for the recombined phase, no divergence occurs since the partition function of the hydro-
gen atom appears naturally in a convergent truncated form, as a consequence of collective
screening effects. Only that truncated partition function embedding both bound and ionized
states is free from ambiguity. More comments about that point are offered in Sect. 3.2.

Collective screening effects also give raise to well-behaved partition functions for more
complex entities, like ions H− and H+

2 , or molecules H2. Such partition functions are nat-
urally defined according to a truncation procedure similar to that introduced for the atomic
partition function. They also involve contributions from both bound and dissociated states.
The molecular partition function accounts thus not only for molecular bound states, but also
for diffusion states made with two protons and two electrons. The finiteness of few-body
truncated partition functions is of course crucial in the analysis of their low-temperature be-
haviors, which are shown to be controlled by Boltzmann factors exp(−βEH ), exp(−βEH−),
exp(−βEH+

2
), exp(−βEH2), associated with the corresponding recombined entities in their

groundstate (as would trivially be expected in a system with short range forces [25, 35]).
Contributions from excited or diffusion states are well-defined in those truncated partition
functions, and they may be neglected when the temperature is low enough.

An exact treatment of screening in the many-body problem is also required to establish
the correct classification of terms in the expansion (1.1) according to decaying exponentials.
For instance, in addition to obvious contributions of atomic bound states, there are correc-
tion terms proportional to the inverse screening length κ (or powers of it), which is itself
proportional to the square root of the density κ ∼ √

ρ. Since the latter is also exponentially
small in the Saha regime (see Sect. 2.2), contributions of collective screening effects have
to be compared to pure atomic terms, and may be predominant as exemplified by the first
correction βP1/ρ

∗. Such systematic classification could not have been obtained without
a unified theory which deals exactly with the interplay between screening effects and the
other physical phenomena at stake (primarily the formation of atomic and molecular bound
states).

Though SLT expansions are asymptotic, i.e. a priori valid in the zero-temperature limit,
they can be used for quantitative purposes within a rather wide range of temperatures and
densities. We have performed numerical calculations, for both the EOS and the internal
energy. For T of the order a few thousand kelvins, the hk(β)’s are not accurately repro-
duced by their simple low-temperature asymptotic forms: further contributions, which arise
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in particular from excited states of the recombined entities, must also be taken into account.
Within a simple criterion on the order of magnitude of the various corrections to Saha pres-
sure, we draw the validity domain of SLT expansion (1.1) in the plane (β,ρ) (see Fig. 12
in Sect. 4.3). That validity domain exemplifies the quantitative interest of our calculations,
which can be applied to physical systems under observable conditions, like the Sun photo-
sphere for instance. Furthermore, we have compared our findings to those of Militzer and
Ceperley [48] obtained within Path Integral Monte Carlo (PIMC) simulations (PIMC meth-
ods have been implemented through successive works [15–17, 47, 49]). The agreement is
satisfactory, as it should since PIMC results are computationally exact within statistical er-
rors (see e.g. Ref. [40]). The detail of that comparison, as well as all our numerical results,
will be presented in a forthcoming paper [1].

From a mathematical view point, all manifestations of screening stem from the screened
potential introduced in Sect. 2.4 and studied in [13]. That potential can be viewed, in the
quantum mechanical context, as the analogue of the classical Debye-Hückel potential. Be-
cause of its central role, we have devoted the long Appendix A: to a number of related
properties which are used in our analysis. In Appendix B:, the low temperature behaviors
of the truncated atomic, ionic and molecular partition functions mentioned above, are deter-
mined by methods using Green functions and path integral representations. In Appendix C:,
we compute the contributions of interactions between atoms and ionized charges.

2 Saha Regime and Screened Cluster Expansion

2.1 Definition of the Model

The hydrogen plasma is a two-component system made of protons and electrons. In the
present non-relativistic limit, the proton and the electron are viewed as quantum point parti-
cles with respective charges, masses, and spins, ep = e and ee = −e, mp and me, σp = 1/2
and σe = 1/2. The kinetic energy operator for each particle of species α = p, e with po-
sition x takes the Schrödinger form −�

2/(2mα)Δ where Δ is the Laplacian with respect
to x. Two particles separated by a distance r interact via the instantaneous Coulomb poten-
tial v(r) = 1/r . The corresponding Coulomb Hamiltonian HNp,Ne for Np protons and Ne

electrons reads

HNp,Ne = −
N∑

i=1

�
2

2mαi

Δi + 1

2

∑

i �=j

eαi
eαj

v(|xi − xj |) (2.1)

where N = Np + Ne is the total number of particles. In (2.1), the subscript i is attached to
protons for i = 1, . . . ,Np and to electrons for i = Np +1, . . . ,Np +Ne , so the species index
αi reduces either to p or e while xi denotes either the position Ri of the i-th proton or the
position rj of the j -th electron (j = i − Np).

The system is enclosed in a box with volume Λ, in contact with a thermostat at temper-
ature T and a reservoir of particles that fixes the chemical potentials equal to μp and μe for
protons and electrons respectively. Its grand-partition function Ξ is

Ξ = Tr exp[−β(HNp,Ne − μpNp − μeNe)]. (2.2)

In (2.2), the trace is taken over all states symmetrized according to the Fermionic nature of
each species; the boundary conditions for the wave functions at the surface of the box can be
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chosen of the Dirichlet type. Lieb and Lebowitz [44] have proved that the thermodynamic
limit (Λ → ∞ at fixed β and μα) exists, thanks to Fermi statistics and screening. Indeed,
the Fermionic statistics of at least one species implies the H -stability [21, 22]

HNp,Ne > −B(Np + Ne), B > 0 (2.3)

that prevents the collapse of the system. On the other hand, screening ensures that it does not
explode. In a fluid phase, the infinite system maintains local neutrality, i.e. the homogeneous
local particle densities ρp and ρe for protons and electrons remain equal for any choice of
the chemical potentials μα . In other words, the common particle density ρ = ρp = ρe , as
well as all other bulk equilibrium quantities, depend on the sole combination

μ = (μp + μe)/2, (2.4)

and not on the difference ν = (μe − μp)/2. In particular, in terms of the fugacities zα =
exp(βμα), this means that both the density ρ and the pressure P are functions of only β and
z = (zpze)

1/2 = exp(βμ). Therefore individual chemical potentials μe,μp are not uniquely
determined: we can choose their difference ν at will without changing the bulk densities.
Among the possible choices, it is particularly convenient to set

μp = μ − 3

2
kBT ln

λe

λp

, μe = μ + 3

2
kBT ln

λe

λp

(2.5)

where λα = (β�
2/mα)

1/2 is the thermal de Broglie wavelength of species α. This choice
guarantees that Maxwell-Boltzmann densities of free (no interactions) proton and electron
gases, respectively

ρid
p = 2zp/(2πλ2

p)3/2,

ρid
e = 2ze/(2πλ2

e)
3/2,

(2.6)

are identical, i.e.

ρid
p = ρid

e = 2z/(2πλ2)3/2 (2.7)

with λ = (λpλe)
1/2. The factors 2 in (2.6) accounts for spin degeneracy.

The enforced neutrality of the ideal mixtures is equivalent to the linear relation

∑

α

eαzα/(2πλ2
α)

3/2 = 0 (2.8)

between the activities zp and ze , sometimes called the pseudo neutrality condition. That con-
dition can be imposed without loss of generality when dealing with fugacity expansions in
the grand canonical ensemble. As shown in Sect. 3, it considerably simplifies the analysis of
diagrammatic series for the interacting system. If we consider other fugacities (z′

p, z′
e) which

do not satisfy the pseudo neutrality condition, an infinite number of graphs contributes to
any term with a given order in low-density expansions. The calculations of those terms then
become rather cumbersome. Nevertheless, beyond that technical complication, their final
expression would be identical to that derived by starting with the above fugacities satisfying
both condition (2.8) and zpze = z′

pz′
e , in agreement with Lieb and Lebowitz proof [44].
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2.2 Rigorous Results at Low Density and Low Temperature

We briefly recall the Saha theory in its simplest form. From the elementary view point of
the thermodynamic of ideal substances, equilibrium ionization phases can be considered in
the so-called chemical picture [26] as mixtures of noninteracting gases of electrons, protons,
and hydrogen atoms, with chemical potential μat obeying the law of chemical equilibrium
μat = μe + μp . According to (2.7) the corresponding densities of electrons and protons are

ρid
p = ρid

e = 2

(
(mpme)

1/2

2πβ�2

)3/2

exp(βμ), (2.9)

whereas the atomic density is

ρid
at = 4

(
M

2πβ�2

)3/2

exp(−β(EH − 2μ)) (2.10)

where M = mp + me is the atomic mass and the factor 4 is the number of spin states.
Apart from the binding energy EH of the Hydrogen atom, all other effects of the Coulomb
interaction are disregarded, so the Saha EOS is that of a mixture of perfect gases

βPSaha = ρid
p + ρid

e + ρid
at . (2.11)

We see in (2.9) and (2.10) that, when μ = EH , all densities are of the same exponential
order at low temperatures: this corresponds to the coexistence of ionized and atomic phases.
It is appropriate to characterize the set of ionization equilibrium phases by a temperature-
dependent chemical potential [45]

μ = μ(β) = EH + kBT lnw (2.12)

where w is a fixed parameter 0 < w < ∞. As shown from (2.9) and (2.10), that parameter
determines the relative proportion of atoms to ionized charges through

ρid
at

ρid
p,e

= 2w

(
M

m

)3/4

= γ

2
, (2.13)

where we have introduced the equivalent parameter γ = 4(M/m)3/4w. According to the
above definitions, the fugacity z = exp(βμ) can be seen as parametrized by either w or γ at
fixed temperature, i.e. z = w exp(βEH) or

z =
(

m

M

)3/4

γ exp(βEH)/4. (2.14)

For further purposes, it is convenient to consider the temperature dependent reference den-
sity ρ∗ defined by (1.2) in the Introduction. Then we can rewrite ideal densities as

ρid
p = ρid

e = ρ∗γ (2.15)

and

ρid
at = ρ∗ γ 2

2
. (2.16)
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In terms of γ , the proton (or electron) density ρ = ρid
p + ρid

at = ρid
e + ρid

at and the Saha
pressure (2.11) respectively read

ρ = ρ∗
(

γ + γ 2

2

)
(2.17)

and

βPSaha = ρ∗
(

2γ + γ 2

2

)
. (2.18)

Inversion of relation (2.17) provides γ , and hence the chemical potential μ, as a function
of the reduced density ρ/ρ∗. Substitution of that function in (2.18) finally yields the Saha
EOS (1.3) for the dimensionless pressure written as a function of ρ/ρ∗ (note that our density
variable is half of the total number density). As said in the Introduction, ρ∗ is the cross-over
density between full ionization and atomic recombination.

The Saha picture has been rigorously justified from the statistical mechanics of the full
interacting electron-proton gas in the following asymptotic sense. When the temperature
goes to zero at fixed negative values of μ, the system obviously becomes highly dilute be-
cause all fugacities then vanish exponentially fast. If low temperatures favor recombination
of electrons and protons into bound entities with negative ground state energies, on the con-
trary low densities favor dissociation. The chemical composition of the system will result of
those two competing energy and entropy effects. That problem has been studied in a rigor-
ous way by Fefferman [27], who proved the two following results using a refined version of
the stability of matter (2.3) (see the discussion after (2.30) and Ref. [14] for a review). First,
when β → ∞ with μ < EH (μ fixed), the pressure tends to that of an ideal mixture of pro-
tons and electrons with respective densities ρid

p and ρid
e (2.9) i.e. the system becomes fully

ionized. Second, there exists some δ > 0 such that, when β → ∞ with EH < μ < EH + δ

(μ fixed), the pressure tends to that of an ideal gas of hydrogen atoms in their groundstate
with density (2.10). In that case, there is full atomic recombination.

The previous discussion of the Saha EOS suggests that ionized protons, ionized electrons
and Hydrogen atoms should coexist at μ = EH . This has been firmly settled by Lieb et al.
[18] and also Macris and Martin [45] who proved that, when one introduces the tempera-
ture dependent chemical potential (2.12) and let β → ∞, the EOS tends to that of an ideal
mixture of protons, electrons, and Hydrogen-atoms in their ground state, namely

βP = (ρid
p + ρid

e + ρid
at )[1 + O(exp(−βε))] = βPSaha[1 + O(exp(−βε))] (2.19)

for β large enough and ε > 0. The original work of Fefferman provides a power-law bound
1/β to the error term; that bound was improved to an exponential one in [18]. Thus we see
that all ideal densities vanish exponentially fast, while corrections to ideal terms in (2.19)
decay exponentially faster. The mathematical methods used in [27] and [18] are adequate
to obtain a rigorous control of the dominant term (the Saha pressure), but apparently not
adapted to explicitly calculate the corrections. In this work, it is our purpose to develop
tools that enable to systematically compute those corrections, by expanding the pressure
beyond the Saha term in an exact way (see (1.1)). In order to characterize the Saha regime
in our study of the interacting system, we shall still use the parametrization (2.14) of the
fugacity z associated with the zero-temperature limit, in terms of the parameter γ .
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2.3 Simple Physical Considerations about the Fugacity Expansion

Saha equation of state (2.19) can be recovered, at a heuristic level, from simple consider-
ations on low fugacities series for the pressure. Those considerations will serve as a guide
to the analytic estimations of various non-ideal contributions to the full EOS at finite tem-
perature and density performed in next sections. Low fugacity series are easily inferred, at a
formal level, from the identity

βP = lnΞ

Λ
, (2.20)

where the thermodynamic limit Λ → ∞ is implicitly taken, as in the whole paper. They
read

βP =
∑

(Np,Ne)�=(0,0)

z
Np
p zNe

e BNp,Ne (2.21)

where Mayer coefficients BNp,Ne in (2.21) can be expressed as suitable traces,

BNp,Ne = 1

Λ
Tr[exp(−βHNp,Ne )]Mayer. (2.22)

The first Mayer operators [exp(−βHNp,Ne )]Mayer read

[exp(−βH1,0)]Mayer = exp(−βH1,0),

[exp(−βH0,1)]Mayer = exp(−βH0,1),

[exp(−βH1,1)]Mayer = exp(−βH1,1) − exp(−βH1,0) exp(−βH0,1),

[exp(−βH2,0)]Mayer = exp(−βH2,0) − 1

2
exp(−βH1,0) exp(−βH1,0),

. . . ,

(2.23)

while a similar expression holds for any [exp(−βHNp,Ne )]Mayer

[exp(−βHNp,Ne )]Mayer = exp(−βHNp,Ne ) − · · · . (2.24)

In (2.24), terms left over reduce to a linear combination of products of Gibbs operators
exp(−βHMp,Me ) (Mp ≤ Np,Me ≤ Ne) associated with all possible partitions of Np protons
and Ne electrons. Traces (2.22) must be taken over Fermionic states which are products of
anti-symmetrized states for each set of degrees of freedom associated with a Gibbs operator
exp(−βHMp,Me ). For instance, in space of positions and spins, B2,0 reads

B2,0 = 1

Λ

∫
dR1

∫
dR2[2〈R1R2| exp(−βH2,0)|R1R2〉

− 2〈R1| exp(−βH1,0)|R1〉〈R2| exp(−βH1,0)|R2〉
− 〈R2R1| exp(−βH2,0)|R1R2〉]. (2.25)

For the term exp(−βH1,0) exp(−βH1,0) subtracted in [exp(−βH2,0)]Mayer, each Gibbs op-
erator exp(−βH1,0) refers to a single proton, so no anti-symmetrization occurs and only
diagonal matrix elements of exp(−βH1,0) appear in (2.25). Truncated Mayer operators can
also be expressed in terms of Ursell operators [32–34].
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Despite Mayer coefficients BNp,Ne diverge, leading contributions to the equation of state
can be easily picked out in formal series (2.21), as follows. For (Np = 1,Ne = 0) and (Np =
0,Ne = 1), we obtain the simple exact expressions

B1,0 = 2

(2πλ2
p)3/2

(2.26)

and

B0,1 = 2

(2πλ2
e)

3/2
. (2.27)

After multiplication by fugacity factors exp(βμp) and exp(βμe) respectively, we obtain
the related contributions to pressure (2.21) which reduce, of course, to the ideal Maxwell-
Boltzmann densities of ionized protons (ρid

p ) and ionized electrons (ρid
e ). For (Np = 1,

Ne = 1), it is reasonable to expect that hydrogen atoms with internal ground state energy
EH provide the leading low-temperature contribution which reads

4

(2πλ2
H )3/2

exp(−βEH), (2.28)

with λH = (β�
2/M)1/2 while factor 4 is due to spin degeneracy. The corresponding contri-

bution to (2.21) is nothing but the ideal Maxwell-Boltzmann density ρid
at of Hydrogen atoms

in their ground state. In the Saha regime, ideal densities of ionized protons (ρid
p ), ionized

electrons (ρid
e ) and hydrogen atoms (ρid

at ) are all found to be of the same order of magnitude
exp(βEH) disregarding powers of β , because of (2.12).

All other contributions to the EOS are expected to be small corrections to Saha pressure,
as suggested by the following simple arguments and estimations. The Saha regime defines
quite diluted conditions since ρ vanishes exponentially fast. Therefore, ionized charges and
hydrogen atoms are expected to be weakly coupled and weakly degenerate. Let us introduce
the various length and energy scales defined in Table 1, where we assume that each atom

Table 1 Length and energy scales in a quantum hydrogen plasma

Symbol Value Physical signification

Length

aB �
2/(me2) Bohr radius

λp,e,at �(β/mp,e,at )
1/2 de Broglie lengths

lB βe2 Bjerrum length

a (3/(4πρ))1/3 Mean interparticle distance

κ−1 (4πβe2[ρid
p + ρid

e ])−1/2 Debye screening length

lQ κ−1| ln(κλ)| Quantum screening distance

Energy

εH−H e2a2
B

/a3 Atom-atom interaction energy

εH−c e2aB/a2 Atom-charge interaction energy

εc−c e2/a Charge-charge interaction energy

εkin kBT Classical kinetic energy

EH |EH | = me4/(2�
2) Atom ground-state energy
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Fig. 1 Hierarchy of a length and b energy scales in the Saha regime

carries, roughly speaking, an instantaneous dipole of order eaB , while the physical signifi-
cation of lQ is given in next Sect. 2.4. According to the hierarchies between those length and
energy scales described in Fig. 1, both exchange and interaction contributions for ionized
charges and hydrogen atoms should be exponentially smaller than above ideal terms. Simi-
larly, we can estimate the contributions of complex entities which result from the quantum
mechanical binding of Ne electrons and Np protons, i.e. the existence of a bound state in
the spectrum of HNp,Ne with negative ground state energy E

(0)
Np,Ne

. The ideal contribution of

a given complex entity is easily extracted from BNp,Ne , and it is of order exp(−βE
(0)
Np,Ne

).
After multiplication by fugacity factor exp[β(μpNp + μeNe)], we find a contribution to
pressure (2.21) which is of order

exp[−β(E
(0)
Np,Ne

− (Np + Ne − 1)EH ] exp(βEH), (2.29)

where we have used parametrization (2.12) of the chemical potential. Ideal contribution
(2.29) decays exponentially faster than exp(βEH) for (Np,Ne) �= (1,1), (1,0), (0,1), by
virtue of inequality

E
(0)
Np,Ne

− (Np + Ne − 1)EH > 0, (Np,Ne) �= (1,0), (0,1), (1,1) (2.30)

which is a key ingredient in Fefferman’s proof [27]. Although not yet proved, that inequality
is satisfied by known complex entities [28] as illustrated below. Of course, and as for ionized
charges and hydrogen atoms, exchange and interactions contributions for complex entities
should be smaller than ideal ones.

Above heuristic arguments suggest that corrections to ideal Saha pressure (2.11) decay
exponentially faster than leading terms when T vanishes, in agreement with the rigorous
bound involved in (2.19). A precise evaluation of those corrections will be performed in
Sect. 3 by using screened cluster expansion described in next Sect. 2.4. That method re-
moves all long range Coulomb divergencies which plague Mayer coefficients BNp,Ne . It
provides well-defined recipes for computing contributions from both interactions and com-
plex entities. The simplest entities which appear are the molecule H2 with groundstate en-
ergy E

(0)

2,2 = EH2 � −31.7 eV, ion H+
2 with E

(0)

2,1 = EH+
2

� −16.2 eV, and ion H− with

E
(0)

1,2 = EH− � −14.3 eV. Notice that such groundstate energies do satisfy inequality 2.30.
For complex entities made with five or more particles, we will assume inequality

E
(0)
Np,Ne

> (Np + Ne − 2)EH , Np + Ne ≥ 5. (2.31)

That inequality, more constraining than (2.30), is indeed satisfied by known stable complex
entities. For instance, E

(0)

3,2 = EH+
3

� −36.5 eV and E
(0)

2,3 = EH−
2

� −28.5 eV are indeed
larger than 3EH � −40.8 eV. Previous groundstate energies are computed within the method
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Fig. 2 Geometrical representation of inequalities (2.30). Consider a line of slope μ < 0 which goes through

the point associated with the hydrogen atom. If all the points (Np + Ne,E
(0)
Np,Ne

) associated with other

entities lie above that line, the inequalities (2.30) hold for that value of μ, and the system tends to a dilute
atomic gas in the limit β → ∞

described in [52]. The corresponding values are in excellent agreement with experiments
and reported data in the literature. The resulting stability regimes of ionized, atomic and
molecular phases are shown in Fig. 2.

2.4 Screened Cluster Expansion within Loop Formalism

Screened cluster expansions are devised within an auxiliary classical system of charged
loops. As first shown by Ginibre [30], Ξ is identical to the grand-partition function of a
classical system made with loops. That transformation starts with the expression of Ξ in
space of positions and spins, and use of Feynman-Kac formula [38, 53, 61, 62],

〈x′
1 · · ·x′

N | exp(−βHNp,Ne )|x1 · · ·xN 〉

=
N∏

i=1

exp[−(x′
i − xi )

2/(2λ2
αi

)]
(2πλ2

αi
)3/2

∫ N∏

i=1

D(ξ i ) exp

[
−β

2

∑

i �=j

eαi
eαj

×
∫ 1

0
dsv(|(1 − s)(xi − xj ) + s(x′

i − x′
j ) + λαi

ξ i (s) − λαj
ξ j (s)|)

]
. (2.32)
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Fig. 3 A loop
L= (α, q,X,η(s)) made up of
5 particles

In the r.h.s. of (2.32), functional integrations are performed over Brownian bridges ξ i (s)

(ξ i (0) = ξ i (1) = 0) with the normalized Gaussian measure D(ξ) defined by its covariance
(see (2.34) with q = 1). Each Brownian bridge ξ i (s) defines a path (1−s)xi +sx′

i +λαi
ξ i (s)

associated with a given particle. A loop L is then defined as the collection of open paths
associated with particles exchanged in a given permutation cycle. This leads to the identity
[14, 19, 46]

Ξ = Ξloop =
∞∑

N=0

1

N !
∫ N∏

i=1

D(Li )z(Li )
∏

i<j

exp(−βV (Li ,Lj )), (2.33)

where fugacity z(Li ) and two-body potential V (Li ,Lj ) are defined below.
A loop L is characterized by its position X, species α = p, e and number q of exchanged

particles, while its shape is defined by a closed Brownian path η(s) with s ∈ [0, q] and
η(0) = η(q) = 0. Genuine particle positions in matrix elements of exp(−β(HNp,Ne ) reduce
to x(k) = X + λαη(k) with k integer, k = 0, . . . , q − 1 (x(0) = x(q) = X) (see Fig. 3). Phase-
space measure D(L) is the product of discrete summations over α and q , spatial integration
over X and functional integration over η(s) with normalized Gaussian measure D(η) defined
by its covariance

∫
D(η)ημ(s)ην(t) = δμνq inf(s/q, t/q)(1 − sup(s/q, t/q)). (2.34)

Fugacity z(L) reads [14, 19]

z(L) = (−1)q−1 2

q

zq
α

(2πqλ2
α)

3/2

× exp

[
−βe2

2

∫ q

0
ds

∫ q

0
dt (1 − δ[s],[t])δ̃(s − t)v(|λαη(s) − λαη(t)|)

]
(2.35)

where δ̃(s − t) = ∑∞
n=−∞ δ(s − t −n) is Dirac comb, while [s] ([t]) denotes the integer part

of s (t ). In (2.35), factor (1−δ[s],[t]) avoids counting point particle self-energy contributions,
while Dirac comb ensures that only loop elements with equal times (modulo an integer)
interact, an essential feature specific to quantum mechanics. Eventually, two-body potential
V (Li ,Lj ) reduces to

V (Li ,Lj ) = eαi
eαj

∫ qi

0
ds

∫ qj

0
dt δ̃(s − t)v(|Xi + λαi

ηi (s) − Xj − λαj
ηj (t)|). (2.36)

At large distances, V behaves as the Coulomb potential between point charges qieαi
and

qj eαj
, i.e. V (Li ,Lj ) ∼ qiqj eαi

eαj
/|Xi − Xj |. Therefore, usual Mayer diagrammatics for
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Fig. 4 Order of magnitude of effective potential φ at various distances. In region λ < r < lQ, interactions are
exponentially screened according to Debye potential. For r > lQ , φ is dominated by (unscreened) multipolar
interactions

loops are plagued with long-range divergences. As in the case of classical Coulomb fluids,
they are removed by summing infinite chains built with V . This amounts to replace V by
screened potential φ which can be viewed as the quantum analog of Debye potential [13].
The explicit formula for the Fourier transform of φ is recalled in Appendix A:. Its spatial
behaviors, according to the hierarchy of scales displayed in Fig. 1, are roughly summarized
in Fig. 4, where only orders of magnitude of φ are given (we set r = |Xi − Xj | and omit
all shape dependences which occur for r < λ or lQ < r). Notice that familiar exponential
decay of φ breaks down at large distances r � lQ. The asymptotic dipolar behavior of φ is
sufficient for ensuring that every graph built with φ is finite [2, 3].

As detailed in [8], so-called screened cluster expansion for protonic density ρp follows
from an exact transformation of formal Mayer diagrammatics for loop density ρ(La) which
provides

ρp =
∑

G

1

S(G)

∫
D(Ca)Z

T
φ (Ca)qa

∫ n∏

i=1

D(Ci)Z
T
φ (Ci)

[∏
Fφ

]

G
(2.37)

(a similar expression holds for ρe). In (2.37), bare potential V is replaced by screened po-
tential φ. Graphs G are identical to usual Mayer graphs, where points are now particle
clusters, except for some specific rules (arising from the replacement of V by φ) which are
described below. Each cluster Ci (i = 0, . . . , n) contains N

(p)

i protons and N
(e)
i electrons.

The internal state of a cluster C(Np,Ne) (C ∈ {Ci, i = 0, . . . , n}) is determined by Lp and
Le loops (L(α)

1 , . . . ,L(α)
Lα

) in which the Np protons and Ne electrons are distributed (in root

cluster C0 = Ca , L(p)

1 is identified to La which contains the root proton). Integration within
phase space measure D(C) reduces to the sum over all possible distributions of particles
into loops combined with integrations over loop positions and shapes (with X(p)

1 = Xa fixed
at the origin for loop L(p)

1 = La). Statistical weight ZT
φ (C) for a cluster C(Np,Ne) reads

ZT
φ (C) =

∏Lp

k=1 zφ(L(p)

k )
∏Le

k=1 zφ(L(e)
k )

∏Np

q=1 np(q)!∏Ne

q=1 ne(q)!
BT

φ ({L(α)
k }), (2.38)

where nα(q) is the number of loops containing q particles of species α (for Ca , np(qa)! is
replaced by (np(qa) − 1)!). Weight zφ(L) reduces to

zφ(L) = z(L) exp[IR(L)] (2.39)

with ring sum IR(L) given by

IR(L) = 1

2

∫
D(L1)z(L1)βV (L,L1)βφ(L1,L). (2.40)
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Truncated Mayer coefficient BT
φ,N is defined by a suitable truncation of usual Mayer coeffi-

cient Bφ,N for N loops with pair interactions φ. This truncation ensures that BT
φ,N remains

integrable over relative distances between loops when φ is replaced by V . First truncated
Mayer coefficients are

BT
φ,1 = 1, BT

φ,2 = exp(−βφ) − 1 + βφ − β2φ2

2! + β3φ3

3! , . . . . (2.41)

Bond Fφ(Ci,Cj ) can be either −βΦ , β2Φ2/2!, −β3Φ3/3!, where total potential Φ(Ci,Cj )

is the sum of pairwise interactions φ(L,L′) over loops L and L′ defining internal states of
Ci and Cj respectively.

As for ordinary Mayer diagrams, two clusters are connected by at most one bond, and
graph G is connected. Here, symmetry factor S(G) is computed by permuting only clusters
with identical numbers of protons and electrons. Moreover, for a cluster C different from
Ca , the internal state of which is determined by a single loop L(α)

1 , when C is either, the
intermediate cluster of a convolution (−βΦ) ∗ (−βΦ), or connected to the rest of the graph
by a single bond β2Φ2/2!, expression (2.38) of its statistical weight must be replaced by

ZT
φ (C) = zφ(L(α)

1 ) − z(L(α)

1 ). (2.42)

Eventually, summation in (2.37) involves only graphs G which are no longer integrable over
relative distances between clusters {Ci, i = 0, . . . , n} when φ is replaced by V . Screened
cluster expansion for the pressure is inferred from use of (2.37) in thermodynamics identi-
ties, as described in Sect. 4.

3 Estimations of Ideal and Non-Ideal Contributions to Fugacity Expansions of
Particle Densities

Now, we proceed to asymptotic estimations, in the Saha regime, of all contributions to
ρ = ρp in screened cluster expansion (2.37). Every contribution to ρp is expressed, simi-
larly to (2.15) and (2.16), as ρ∗ times a power of γ , and times a dimensionless temperature-
dependent function. This provides a formal representation of ρ/ρ∗ in powers of γ , where
the coefficients depend only on temperature (see (4.2)). At low temperatures, every coef-
ficient decays exponentially fast. In Sects. 3.1–3.6, we select all contributions which are
smaller than leading terms (2.15) and (2.16) (divided by ρ∗) by exponentially decaying
factors of maximum order exp(βEH) (β → ∞). In Sect. 3.7, we show that all other contri-
butions decay faster by factors exponentially smaller than exp(βEH). Beyond leading ideal
contributions of ionized protons (2.15) and hydrogen atoms (2.16) (which are recovered
in Sects. 3.1 and 3.2), we determine first corrections arising from their mutual interactions
(Sects. 3.1, 3.4, 3.5 and 3.6). Such corrections are at most of order (ρid

p,e,at )
2, so they are

smaller than leading terms by exponential factor exp(βEH). We also study ideal-like contri-
butions of recombined entities, molecules H2, ions H− and H+

2 (Sects. 3.3 and 3.6) which
must be accounted for at that order. In the following, a graph with Np protons and Ne elec-
trons will be obviously denoted GNp,Ne (for Np + Ne > 1, there are several graphs with
identical particle numbers).
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Fig. 5 Graphs representing
simple entities: a ionized proton
and b hydrogen atom

3.1 Ionized Proton and Plasma Polarization

An ionized proton appears in graph G1,0 (see Fig. 5a) made with the sole root cluster Ca

containing a single proton. The internal state of Ca is defined by the sole protonic loop L(p)
a

with qa = 1. The contribution of G1,0 to (2.37) then reads
∫

D(ξ a)zφ(L(p)
a ) = 2zp

(2πλ2
p)3/2

∫
D(ξ a) exp(IR(L(p)

a )). (3.1)

We stress that collective effects are embedded in ring sum IR(L(p)
a ). Thus, strictly speaking,

G1,0 describes an ionized proton dressed by the surrounding plasma of ionized protons and
electrons. Within the present framework, that dressing mechanism accounts for the familiar
plasma polarization induced by an immersed charge.

In the Saha regime, ring sum IR(L(p)
a ) can be evaluated by using the exact expression of

φ (see Appendix A:). The corresponding asymptotic behavior can be easily recovered via
the following simple estimation of convolution integral (2.40). At leading order, only terms
q1 = 1 (α1 = p, e) need to be retained into D(L1). Moreover the integration over position
X1 is controlled by relative distances |X1 − Xa| of order κ−1. At such distances, φ(L1,L(p)

a )

can be replaced by its Debye form, while V (L(p)
a ,L1) merely reduces to eeα1/|X1 − Xa|.

This gives

IR(L(p)
a ) ∼ βe2κ2

8π

∫
dX1

∫
D(ξ 1)

exp(−κ|X1 − Xa|)
|X1 − Xa|2 ∼ βe2κ

2
, (3.2)

in perfect agreement with the detailed analysis of Appendix A:.
Since βe2κ is small (see Fig. 1), dressing effects in (3.1) can be treated perturbatively by

expanding exp(IR(L(p)
a )) in powers of IR . The resulting leading contribution of G1,0 reads

2zp

(2πλ2
p)3/2

∫
D(ξ a) = 2zp

(2πλ2
p)3/2

= ρid
p = ρ∗γ, (3.3)

where functional integration over ξ a merely reduces to 1 by normalization of Gaussian
measure D(ξ a). That leading term reduces to ideal Maxwell-Boltzmann density of ionized
protons (2.15) (i.e. bare contribution zpB1,0 as it should).

Taking into account (3.2), we find that first correction to (3.3) is rewritten as

2zp

(2πλ2
p)3/2

∫
D(ξ a)IR(L(p)

a ) ∼ 2zp

(2πλ2
p)3/2

βe2κ

∫
D(ξ a) = ρid

p

βe2κ

2
. (3.4)

Contribution (3.4) involves a factor z3/2, and hence a factor γ 3/2 times exp(3βEH/2). One
factor exp(βEH) may be absorbed into the prefactor ρ∗. It remains a factor exp(βEH/2),
which multiplies the remaining part of the contribution. Therefore, we rewrite (3.4) as

ρid
p

βe2κ

2
= ρ∗γ 3/2S3/2(1,0) exp(βEH/2), (3.5)
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where we define screening function

S3/2(1,0) = (β|EH |)3/4

π1/4
. (3.6)

Index 3/2 of screening function refers to the power of γ and (1,0) to the single proton
cluster. All subsequent contributions will be written according to the same prescription.

First correction (3.4) accounts for familiar plasma polarization induced by a single proton
(i.e. cluster (1,0)) at lowest order. Its simple structure results from the almost classical
and weakly coupled nature of the plasma mentioned in Sect. 2.3. Higher order collective
corrections proportional to γ p (with p integer or half-integer), can be rewritten similarly to
(3.4) via the definition of screening functions Sp(1,0) which depend only on β . For instance,
next correction to (3.4) merely reduces to

ρ∗γ 2S2(1,0) exp(βEH), (3.7)

with

S2(1,0) = (β|EH |)3/2

2
√

π
−

(
1 +

(
2m

mp

)1/2)
β|EH |

8
. (3.8)

The first contribution in the r.h.s. of (3.8) arises from the quadratic term in the expansion
of exp(IR(L(p)

a )), while the second one arises from the linear term where loop-shape depen-
dence of IR(L(p)

a ) beyond classical form (3.3) is taken into account (see (A.11)). Further
corrections are exponentially smaller than (3.7) as shown in Appendix A:.

The dressing mechanism associated with plasma polarization occurs for any particle in
all other graphs GNp,Ne . At lowest order, every ring factor exp(IR) can be replaced by 1, and
first corrections are obtained by using (3.2).

3.2 Hydrogen Atom: Recombination and Dissociation Contributions

A hydrogen atom is expected to appear in graph G1,1 made with single root cluster Ca (see
Fig. 5b). The contribution of G1,1 reads

∫
D(ξ a)zφ(L(p)

a )

∫
dX1

∫
D(ξ 1)zφ(L(e)

1 )BT
φ (L(p)

a ,L(e)

1 )

= 4zpze

(2πλ2)3

∫
D(ξ a) exp(IR(a))

∫
dX1

∫
D(ξ 1) exp(IR(1))

×
[

exp(−βφ(a,1)) − 1 + βφ(a,1) − β2φ2(a,1)

2! + β3φ3(a,1)

3!
]

(3.9)

(with obvious simplified notations for the dependence of IR and φ on loops L(p)
a and L(e)

1 ).
In (3.9), protonic loop L(p)

a and electronic loop L(e)

1 contain one proton (qa = 1) and one
electron (q1 = 1) respectively. Each of those particles are dressed like the ionized proton in
G1,0. Furthermore, their mutual interaction φ involves screening effects, which are also due
to the surrounding plasma of ionized protons and electrons. At leading order, since φ(a,1)

reduces to V at finite distances |X1 − Xa| (see Appendix A:), BT
φ (a,1) can be replaced by

BT (a,1) defined by (2.41) with V in place of φ. The resulting bare contribution of G1,1, as
well as first corrections due to collective effects, are successively estimated as follows.
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3.2.1 Bare Contribution in the Vacuum

The bare contribution of G1,1 reads

4zpze

(2πλ2)3

∫
dX1

∫
D(ξ a)D(ξ 1)

×
[

exp(−βV (a,1)) − 1 + βV (a,1) − β2V 2(a,1)

2! + β3V 3(a,1)

3!
]
. (3.10)

In (3.10), functional integrations over shapes ξ a and ξ 1 can be exactly rewritten in terms of
matrix elements of suitable operators by applying backwards Feynman-Kac formula (2.32).
For the exponential factor in BT (a,1), we obviously obtain

1

(2πλ2
p)3/2(2πλ2

e)
3/2

∫
D(ξ a)D(ξ 1) exp(−βV (a,1))

= 〈Rar1| exp(−βH1,1)|Rar1〉 (3.11)

with Ra = Xa and r1 = X1. Functional integrations of powers of V (a,1) in BT (a,1), are
related to the corresponding terms arising in Dyson expansion of 〈Rar1| exp(−βH1,1)|Rar1〉
with respect to interaction part V1,1 of H1,1. Moreover, let us introduce position R∗ =
(mpRa + mer1)/M of the atom mass center, and one-body Hamiltonian Hpe of relative
particle with position r∗ = r1 − Ra . Then, bare contribution (3.10) becomes

ρ∗ γ 2

8
Z(1,1) exp(βEH), (3.12)

with

Z(1,1) = (2πλ2
H )3/2

Λ
Tr[exp(−βH1,1)]TMayer

= 4
∫

dr∗〈r∗|[exp(−βHpe)]TMayer|r∗〉, (3.13)

where [exp(−βHpe)]TMayer stands for truncated Mayer operator

[exp(−βHpe)]TMayer

= exp(−βHpe) − exp(−βKpe)

+
∫ β

0
dτ1 exp[−(β − τ1)Kpe]Vpe exp[−τ1Kpe]

−
∫ β

0
dτ1

∫ τ1

0
dτ2 exp[−(β − τ1)Kpe]Vpe exp[−(τ1 − τ2)Kpe]Vpe exp[−τ2Kpe]

+
∫ β

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3 exp[−(β − τ1)Kpe]Vpe exp[−(τ1 − τ2)Kpe]

× Vpe exp[−(τ2 − τ3)Kpe]Vpe exp[−τ3Kpe] (3.14)

(Kpe = −�
2Δ/(2m) and Vpe = −e2/r).
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Partition function (3.13) is similar to the so-called direct quantum virial function first
introduced by Ebeling [23] (see Sect. 4.1). It incorporates contributions from both bound
states (recombination of proton and electron into an hydrogen atom) and diffusion states
(dissociation of an hydrogen atom into ionized proton and electron). Contrary to the trace of
[exp(−βHpe)]Mayer, Z(1,1) is finite because 〈r∗|[exp(−βHpe)]TMayer|r∗〉 decays as 1/(r∗)4

at large distances. Though truncation in [exp(−βHpe)]TMayer can be traced back to collective
screening effects, Z(1,1) depends only on temperature, and no longer on density.

In order to estimate (3.13) at low temperatures, we can heuristically extend the very sim-
ple argument used in Section 2.3 for estimating B1,1. For r∗ ∼ aB , contribution of ground
state ψ0(r

∗) of Hpe to 〈r∗| exp(−βHpe)|r∗〉 exponentially dominates all other contributions
because of the finite gap between EH and the rest of the spectrum. Moreover, truncated
terms in [exp(−βHpe)]TMayer, which are crucial for ensuring the finiteness of the trace, do not
generate exponentially growing terms at low temperatures, because they only involve Gibbs
operators associated with kinetic Hamiltonian Kpe. Therefore, the leading behavior of (3.13)
when β → ∞, obtained by replacing 〈r∗|[exp(−βHpe)]T |r∗〉 by |ψ0(r∗)|2 exp(−βEH ),
merely is

Z(1,1) ∼ 4 exp(−βEH). (3.15)

Beyond the previous heuristic argument, we present in Appendix B: a non-perturbative
derivation of (3.15), which is quite useful for further purposes (see Sects. 3.3 and 3.7) since
it provides convincing low-temperature estimations of quantities similar to (3.13) involving
three or more particles.

Eventually, according to formula (3.12), the leading bare contribution of G1,1 reads

ρ∗ γ 2

2
, (3.16)

which is nothing but ideal contribution (2.16) of hydrogen atoms in their groundstate. Be-
yond leading term (3.16), the rest of the bare contribution of G1,1 can be rewritten as

ρ∗ γ 2

8
Zexc(1,1) exp(βEH), (3.17)

with Zexc(1,1) = Z(1,1) − 4 exp(−βEH). At low temperatures, leading contribution to
(3.17) arises from the first excited level (E(1)

H = EH /4) of the hydrogen atom and reads

2ρ∗γ 2 exp

(
3βEH

4

)
. (3.18)

It can be viewed as the ideal density of hydrogen atoms in their first excited state. As ex-
pected, that level is less populated than the ground state by exponentially decaying Boltz-
mann factor exp(3βEH/4) associated with energy difference E

(1)
H − EH = −3EH/4 (apart

from the trivial factor 4 arising from orbital degeneracy of the first excited state).
If the identification of atomic states contributions (like (3.16) or (3.18)) makes sense in

the zero-temperature limit defining Saha regime, at finite temperatures the definition of an
atomic part ZH in Z(1,1) is arbitrary, as it has been noticed for a long time (see Ref. [39]
and references quoted therein). That ambiguity is related to the fact that contributions of
bound states with |E(p)

H | ≤ kBT cannot be disentangled from that of diffusion states since
they have the same order of magnitude. A possible definition of ZH is a finite sum of terms
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analogous to (3.18) up to pmax such that |E(pmax)

H | � kBT : that procedure accounts for ex-
pected thermal ionization which prevents the existence of highly excited hydrogen atoms in
so-called Rydberg states. As emphasized in Ref. [39], only the full contribution embedded
in Z(1,1), obviously independent of above arbitrariness, is relevant for thermodynamics.
Notice that diffusion state contributions describe (unscreened) short-distance interactions
between ionized proton and electron. Such contributions are similar to that involved in G2,0

(see Sect. 3.3), and they are smaller than ideal contribution (3.16) by exponential factor
exp(βEH) apart from powers of β .

3.2.2 Collective Corrections

The first contributions of G1,1 due to collective effects are obtained by expanding, in (3.9),
ring factors exp(IR(a)) and exp(IR(1)) in powers of IR(a) and IR(1), and Mayer coefficient
BT

φ (a,1) in powers of (φ − V )(a,1). At lowest order, IR(a) and IR(1) behave as βe2κ/2,
while (φ − V )(a,1) behaves as e2κ at distances r < βe2. Therefore, first polarization cor-
rections, which are smaller than leading bare contribution (3.16) by an extra factor βe2κ ,
cancel out: an Hydrogen atom, which is a neutral entity, does not polarize its surrounding
plasma at lowest order.

Collective corrections to (3.16) are then determined by the behavior of IR and (φ − V )

beyond the previous simple constants. In other words, the bare proton-electron Coulomb
potential is modified, beyond the familiar Debye shift, by a coupling between quantum fluc-
tuations of both particles and the surrounding plasma. That effect cannot be incorporated
into an effective potential. The corresponding calculation, performed in Appendix A:, gives
at lowest order,

ρ∗γ 3S3(1,1) exp(2βEH), (3.19)

where screening function S3(1,1) for cluster (1,1) is given by (A.16). Contribution (3.19)
is exponentially smaller than (3.16) by factor exp(βEH) and must be retained at that order,
because S3(1,1) behaves as a power of β times exp(−βEH) (see (A.17)). As shown in
Appendix A:, higher order collective corrections decay exponentially faster than (3.19).

3.3 Other Complex Entities

3.3.1 Two-Proton Cluster

A two-proton cluster is described by graph G2,0 made with single root cluster Ca (see
Fig. 6a). There are two possible loop configurations for the internal state of root cluster
Ca : either the two protons belong to two different loops L(p)

a and L(p)

1 , or they belong to a
single loop L(p)

a . The corresponding contribution reads
∫

D(ξ a)zφ(L(p)
a )

∫
dX1

∫
D(ξ 1)zφ(L(p)

1 )BT
φ (L(p)

a ,L(p)

1 ) +
∫

D(ηa)2zφ(L(p)
a )

= 4z2
p

(2πλ2
p)3

∫
dX1

∫
D(ξ a)D(ξ 1) exp(IR(a)) exp(IR(1))

×
[

exp(−βφ(a,1)) − 1 + βφ(a,1) − β2φ2(a,1)

2! + β3φ3(a,1)

3!
]

− 2z2
p

(4πλ2
p)3/2

∫
D(ηa) exp(IR(a)) exp(−βU(a)). (3.20)
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Fig. 6 Graphs representing various complex entities: a two-proton cluster; b molecule H2; c ion H+
2 ;

d ion H−

Like (3.9), (3.20) incorporates collective effects, i.e. dressing of each proton and screening
of their mutual interactions.

At leading order, after applying backwards Feynman-Kac formula (2.32), we find that
the bare contribution of Fig. 6a reduces to

ρ∗ γ 2

√
2

(
m

mp

)3/2

Z(2,0) exp(βEH), (3.21)

with

Z(2,0) = (πλ2
p)3/2

Λ
Tr[exp(−βH2,0)]TMayer

=
∫

dr∗{2〈r∗|[exp(−βHpp)]TMayer|r∗〉 − 〈−r∗| exp(−βHpp)|r∗〉}. (3.22)

In (3.22), Hpp is the one-body Hamiltonian of relative particle with position r∗ = R1 − Ra

and mass mpp = mp/2, Hpp = Kpp + Vpp with Kpp = −�
2Δ/(2mpp) and Vpp = e2/r .

Moreover, [exp(−βHpp)]TMayer is defined as (3.14) with Kpp and Vpp in place of Kpe and
Vpe respectively. Like Z(1,1), Z(2,0) is also merely related to Ebeling quantum virial func-
tions (see Sect. 4.1). Thanks to truncation in [exp(−βHpp)]TMayer, the integral over r∗ does
converge contrary to the integral in (2.25) that formally defines B2,0. Because of the con-
tinuous nature of the spectrum of Hpp which starts at zero, Z(2,0) behaves as a power law
at low temperatures. Contribution (3.21) then decays faster than ρ∗ by exponential factor
exp(βEH) (discarding powers of β).

Collective corrections to (3.21) arise from expansions of ring factors and of Mayer coef-
ficient in (3.20). At lowest order, we can use IR(a) ∼ IR(1) ∼ βe2κ/2 and (φ − V )(a,1) ∼
−e2κ (r < βe2) for qa = q1 = 1, while IR(a) ∼ 2βe2κ for qa = 2. Therefore, the first polar-
ization correction to (3.21), which can be treated at a purely classical level, is smaller than
ρ∗ by factor exp(3βEH/2).

3.3.2 Molecule H2

Contribution of a molecule H2 is embedded in graph G2,2 made with the single root cluster
Ca containing two protons and two electrons (Fig. 6b). Again, dressing of particles as well
as screening of their mutual interactions can be treated perturbatively in the Saha regime. At
leading order, the resulting bare contribution of G2,2 is then transformed into

ρ∗γ 4

√
2

32

(
m

M

)3/2

Z(2,2) exp(3βEH), (3.23)
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with

Z(2,2) = (2πλ2
H2

)3/2

Λ
Tr[exp(−βH2,2)]TMayer

= (2πλ2
H2

)3/2
∫

dR1dr1dr2{4〈RaR1r1r2| exp(−βH2,2)|RaR1r1r2〉
− 2〈R1Rar1r2| exp(−βH2,2)|RaR1r1r2〉
− 2〈RaR1r2r1| exp(−βH2,2)|RaR1r1r2〉
+ 〈R1Rar2r1| exp(−βH2,2)|RaR1r1r2〉 + · · ·} (3.24)

(λH2 = (β�
2/(2M))1/2). Like (3.14), truncated Mayer operator [exp(−βH2,2)]TMayer is de-

fined as a suitable truncation of [exp(−βH2,2)]Mayer inherited from the structure of coeffi-
cients BT

φ,N (N = 1,2,3,4). In addition to the terms already present in [exp(−βH2,2)]Mayer,
that truncation involves products of imaginary-time evolutions of interaction potentials
between subsets of two protons and two electrons (for our purpose, it is not neces-
sary to detail here all the numerous terms involved in that truncation). This ensures that
[exp(−βH2,2)]TMayer has a finite trace contrary to [exp(−βH2,2)]Mayer.

Similarly to (3.13), partition function (3.24) incorporates contributions from both re-
combination into molecules H2, and dissociation (interactions at short distances between
atoms H , ions H+

2 , ions H−, ionized protons and ionized electrons). At low temperatures,
the leading behavior of Z(2,2) is determined by applying the method described in Ap-
pendix B:. A key ingredient is the discrete nature of the spectrum of H2,2 (discarding the
trivial contribution of the center of mass) near its infimum. Moreover, we assume quite
weak bounds for three- and four-body Coulomb Green functions, inspired in part from their
known exact two-body counterparts [36]. Then, we show that leading contribution to Z(2,2)

arises from the first four terms in the r.h.s of (3.24) evaluated for the ground state of mole-
cule H2 with energy EH2 = E

(0)

2,2. Thus, despite truncated terms beyond matrix elements of
exp(−βH2,2) not written explicitly in the r.h.s. of (3.24), are crucial for ensuring finiteness
of Z(2,2), they do not affect its leading low-temperature behavior which merely reads

Z(2,2) ∼ exp(−βEH2) (3.25)

when β → ∞. Since H2 contains two protons, the resulting contribution (3.23) is twice ideal
density ρid

H2
of molecules H2 in their para-groundstate where the two protons, as well as the

two electrons, have opposite spin orientations, while the total angular momentum is zero.
First thermal corrections to (3.25) arise from molecular excited states. Contrarily to the

atomic case, such states are not exactly known. However, according to the usual phenom-
enology, they are expected to be well described by para-states and ortho-states (the two
protons have the same spin orientation) with non-zero angular momenta describing global
rotations of the molecule [42]. Moreover, excited states with still higher energies can be
associated with proton vibrations and ultimately electronic excitations [42].

Beyond above purely molecular terms, Z(2,2) also incorporates short-range contribu-
tions which account for interactions between products of molecular dissociation, as well as
the corresponding exchange effects. Similarly to the case of Z(1,1) where atomic contribu-
tions are mixed to those of interactions between ionized-charges, the extraction of either a
molecular part ZH2 or an atom-atom contribution in Z(2,2), remains arbitrary. Again, that
arbitrariness does not cause any trouble for thermodynamics which depend only on the full
contribution Z(2,2).
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Collective corrections to (3.23) embedded in G2,2 can be studied as above (see Sect. 3.2).
Like atom H , molecule H2 is neutral so it does not polarize (at lowest order) the surrounding
plasma. First collective corrections are then smaller than (3.25) by an extra factor (βe2κ)2

of order exp(βEH). Therefore, they are smaller than ρ∗ by a factor exp[β(4EH − EH2)],
which is itself exponentially smaller than exp(βEH) by virtue of inequality 3EH < EH2 .

3.3.3 Ions H− and H+
2

Ions H+
2 and H− appear in graphs G2,1 (Fig. 6c) and G1,2 (Fig. 6d) respectively. The corre-

sponding bare contributions are rewritten as

ρ∗ γ 3

16

(
me(M + mp)

M2

)3/2

Z(2,1) exp(2βEH) (3.26)

and

ρ∗ γ 3

32

(
mp(M + me)

M2

)3/2

Z(1,2) exp(2βEH), (3.27)

with

Z(2,1) =
(2πλ2

H+
2
)3/2

Λ
Tr[exp(−βH2,1)]TMayer (3.28)

and

Z(1,2) = (2πλ2
H−)3/2

Λ
Tr[exp(−βH1,2)]TMayer (3.29)

(λH+
2

= (β�
2/(M + mp))1/2 and λH− = (β�

2/(M + me))
1/2). Truncated Mayer operators

[exp(−βH2,1)]TMayer and [exp(−βH1,2)]TMayer are defined similarly to [exp(−βH2,2)]TMayer and
[exp(−βH1,1)]TMayer. The low-temperature behaviors of (3.26) and (3.27) are determined by
applying the method described in Appendix B:. As for (3.13) and (3.24), truncated terms
beyond exp(−βH2,1) or exp(−βH1,2) do not contribute at leading order. Therefore, we find
that (3.26) behaves as

ρ∗ γ 3

8

(
me(M + mp)

M2

)3/2

exp[β(2EH − EH+
2
)] = 2ρid

H+
2
, (3.30)

where ρid

H+
2

is the ideal density of ions H+
2 in their groundstate with energy EH+

2
= E

(0)

2,1,

which is doubly degenerated because of electron spin. Similarly, we obtain leading behavior
of (3.27), i.e.

ρ∗ γ 3

16

(
mp(M + me)

M2

)3/2

exp[β(2EH − EH−)] = ρid
H− , (3.31)

where ρid
H− is the ideal density of ions H− in their groundstate with energy EH− = E

(0)

1,2,
which is doubly degenerated because of proton spin. Like (3.23), those ideal contribu-
tions decay exponentially faster than ρ∗ in the Saha regime. Density effects embedded
in G2,1 and G1,2 are similar to those encountered above for an ionized proton. They
provide contributions which are smaller than ρ∗ by factors exp(β(5EH/2 − EH+

2
)) and

exp(β(5EH/2 − EH−)), while such factors are themselves exponentially small compared
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to exp(βEH) by virtue of inequalities 3EH/2 < EH+
2

and 3EH/2 < EH− (see numerical
values given in Sect. 2.3).

3.4 Interactions between Ionized Charges beyond Polarization Effects

Since the Saha regime is quite diluted and weakly coupled (see Sect. 2.3), leading con-
tributions of screened interactions are embedded in the polarization mechanism described
in Sect. 3.1 for a graph with a single particle. This provides well-known Debye correc-
tion (3.4). Beyond that mean-field contribution, next contributions of interactions between
ionized charges arise from graphs involving two particles, namely G1,1 and G2,0 shown in
Figs. 5b, 6a and 7a–c. As quoted above, graphs made with one cluster (Figs. 5b and 6a)
involve contributions of unscreened interactions at short distances. Graphs made with two
clusters, Ca (one proton) and C1 (one proton or one electron), connected by a single bond
Fφ(Ca,C1) which can be either −βΦ (Fig. 7a), β2Φ2/2! (Fig. 7b), or −β3Φ3/3! (Fig. 7c),
account for large-distance screened contributions which are estimated as follows.

Graphs shown in Fig. 7a (with α = p, e) provide contribution

−β

∫
dX1

∫
D(ξ a)D(ξ 1)zφ(L(p)

a )[zφ(L(p)

1 )φ(L(p)
a ,L(p)

1 ) + zφ(L(e)

1 )φ(L(p)
a ,L(e)

1 )]

= − 4βzp

(2πλ2
p)3/2

∫
dX1

∫
D(ξ a)D(ξ 1) exp(IR(L(p)

a ))

×
[

zp

(2πλ2
p)3/2

exp(IR(L(p)

1 ))φ(L(p)
a ,L(p)

1 )

+ ze

(2πλ2
e)

3/2
exp(IR(L(e)

1 ))φ(L(p)
a ,L(e)

1 )

]
. (3.32)

The expansion of ring factors exp(IR(L(p)
a )) and exp(IR(L(p)

1 )) provides a first contribution
which vanishes by virtue of identity (A.3) derived in Appendix A:. The first non-vanishing
contribution arises from linear terms IR(L(p)

1 ) and IR(L(e)

1 ) where loop-shape dependences
beyond classical behavior (3.2) are included. At lowest order, φ can then be replaced by its
classical Debye form, and the resulting leading contribution of Fig. 7a is

−ρ∗ γ 2

2
[S2(1,0) − S2(0,1)] exp(βEH) (3.33)

with

S2(0,1) = (β|EH |)3/2

2
√

π
−

(
1 +

(
2m

me

)1/2)
β|EH |

8
, (3.34)

Fig. 7 Graphs describing screened interactions between one proton and one electron (α = e), or between
two ionized protons (α = p)
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which follows from (A.11). Further contributions decay exponentially faster than
ρ∗ exp(βEH).

Because weight of cluster C1 has specific form (2.42), contribution of Fig. 7b reads

β2

2

∫
dX1

∫
D(ξ a)D(ξ 1)zφ(L(p)

a )[(zφ(L(p)

1 ) − z(L(p)

1 ))φ2(L(p)
a ,L(p)

1 )

+ (zφ(L(e)

1 ) − z(L(e)

1 ))φ2(L(p)
a ,L(e)

1 )]

= 2β2zp

(2πλ2
p)3/2

∫
dX1

∫
D(ξ a)D(ξ 1) exp(IR(L(p)

a ))

×
[

zp

(2πλ2
p)3/2

(exp(IR(L(p)

1 )) − 1)φ2(L(p)
a ,L(p)

1 )

+ ze

(2πλ2
e)

3/2
(exp(IR(L(e)

1 )) − 1)φ2(L(p)
a ,L(e)

1 )

]
. (3.35)

At lowest order, we can replace factors (exp(IR(L(p)

1 )) − 1) and (exp(IR(L(e)

1 )) − 1) by
βe2κ/2 on one hand, and φ by its classical Debye form on another hand. This provides the
leading contribution of (3.35)

(ρid
p )2 β3e6

2
κ

∫
dX1

exp(−2κ|X1 − Xa|)
|X1 − Xa|2

= π(ρid
p )2β3e6 = ρ∗γ 2[W(1,0|1,0) + W(1,0|0,1)] exp(βEH) (3.36)

with

W(1,0|1,0) = W(1,0|0,1) = (β|EH |)3/2

4
√

π
, (3.37)

in agreement with asymptotic formula (A.6) derived in Appendix A:. Functions W can
be interpreted as resulting from effective interactions between ionized charges generated
by quadratic fluctuations of φ. Next corrections to (3.36) decay exponentially faster than
ρ∗ exp(βEH), as inferred from (A.6) and (A.11).

Eventually, contribution of Fig. 7c is

−β3

3!
∫

dX1

∫
D(ξ a)D(ξ 1)zφ(L(p)

a )

[
zφ(L(p)

1 )φ3(L(p)
a ,L(p)

1 ) + zφ(L(e)

1 )φ3(L(p)
a ,L(e)

1 )

]

= − 2β3zp

3(2πλ2
p)3/2

∫
dX1

∫
D(ξ a)D(ξ 1) exp(IR(L(p)

a ))

×
[

zp

(2πλ2
p)3/2

exp(IR(L(p)

1 ))φ3(L(p)
a ,L(p)

1 )

+ ze

(2πλ2
e)

3/2
exp(IR(L(e)

1 ))φ3(L(p)
a ,L(e)

1 )

]
, (3.38)
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with qa = q1 = 1, η
(p)
a = ξ a and η

(p,e)

1 = ξ 1. All collective effects can be omitted in (3.38) at
lowest order, so leading contribution reads

−ρ∗γ 2 cp(β|EH |)3/2

12π3/2
exp(βEH) (3.39)

with numerical constant cp given by (A.8). Next corrections to (3.39) decay exponentially
faster than ρ∗ exp(βEH).

3.5 Interactions between an Atom and an Atom or an Ionized Charge

As argued in Sect. 2.3, atoms H are expected to be weakly coupled under Saha conditions,
like ionized charges (see Sects. 3.1 and 3.4). Leading contributions of interactions between
atoms and ionized charges should then involve either two atoms or a single one. As quoted
in Sect. 3.3, short-range parts of those contributions are embedded in Figs. 6b–d made with
a single cluster. Here, we consider other graphs made with two clusters which account for
complementary parts including long-range effects.

3.5.1 Atom-Atom Interactions

Figures 8a–c describe interactions between two atoms. Contrary to the case of ionized
charges, screening effects can now be omitted at leading order, because each atom is neu-
tral. In other words, potential Φ(Ca,C1) between clusters Ca and C1 can be replaced by its
bare counterpart V (Ca,C1), which decays as a dipolar interaction (the corresponding 1/R3-
decay is sufficient for ensuring integrability in Fig. 8a for symmetry reasons). Of course,
in statistical weights defining internal states of Ca and C1, collective effects can be also
ignored at leading order. Then contribution of Fig. 8a vanishes by symmetry, while the re-
sulting bare contributions of Figs. 8b and 8c can be rewritten in terms of matrix elements of
Gibbs operators by applying backwards Feynman-Kac formula (2.32). Leading contribution
of Fig. 8b reads

z2
pz2

e

∫
dR1dr1dr2

{
16〈RaR1r1r2|

×
∫ β

0
dτ1

∫ τ1

0
dτ2 exp[−(β − τ1)(Hat + Hat )]Vat,at

× exp[−(τ1 − τ2)(Hat + Hat )]Vat,at

× exp[−τ2(Hat + Hat )]|RaR1r1r2〉 + · · ·
}
, (3.40)

where Hat = H1,1 is the Hamiltonian of a single atom, while Vat,at is the interaction poten-
tial between two atoms. Terms · · · in (3.40) have a structure analogous to those subtracted

Fig. 8 Graphs accounting for interactions between two hydrogen atoms
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from exp(−βHpe) in (3.14). The corresponding truncation, inherited from that in the BT ’s,
is analogous to that defining individual atomic partition functions: it ensures that spatial in-
tegration over R1, r1, r2 does converge. An expression similar to (3.40) can be obtained for
Fig. 8c.

Full bare contribution of Figs. 8b and 8c takes the form (see Appendix C:)

ρ∗γ 4W(1,1|1,1) exp(3βEH), (3.41)

discarding terms which decay exponentially faster than ρ∗ exp(βEH). When β → ∞,
W(1,1|1,1) behaves as

W(1,1|1,1) ∼ cat,at

32π3/2(β|EH |)1/2
exp(−2βEH) (3.42)

where cat,at is the pure numerical coefficient (C.1). Function W(1,1|1,1) accounts for un-
screened interactions between two hydrogen atoms in their groundstate. Contributions from
both short and large separations R are involved. In particular, contributions from familiar
van der Waals interactions UH−H (R) = −AH−H/R6 (with positive constant AH−H com-
puted from quantum perturbation theory at zero temperature [42]), do emerge through the
large-distance (R = |R∗

2 − R∗
1| � λH ) behavior

〈RaR1r1r2|
∫ β

0
dτ1

∫ τ1

0
dτ2 exp[−(β − τ1)(Hat + Hat )]Vat,at

× exp[−(τ1 − τ2)(Hat + Hat )]Vat,at exp[−τ2(Hat + Hat )]|RaR1r1r2〉

∼ −exp(−2βEH)

(2πλ2
H )3

|ψ0(r
∗
1 )|2|ψ0(r

∗
2 )|2βUH−H (|R∗

1 − R∗
2|), (3.43)

for spatial configurations r∗
1 ∼ r∗

2 ∼ aB and sufficiently low temperatures.
Collective corrections to (3.41) are exponentially smaller than its leading behavior. No-

tice that they arise from various effects: plasma polarization associated with ring factors
exp(IR), Debye exponential screening of interactions at scales κ−1, and also modification of
1/R6-tails at distances larger than lQ as detailed elsewhere [9].

3.5.2 Atom-Proton and Atom-Electron Interactions

Figs. 9a–f account for interactions between one atom H and a single ionized charge. Lead-
ing contribution of Fig. 9a (obtained by replacing ring factors by 1) vanishes by virtue of

Fig. 9 Graphs accounting for interactions between a hydrogen atom and an ionized charge (α = p or e)
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identity (A.3). Like Fig. 8a, bare contribution of Fig. 9d also vanishes for symmetry reasons.
Therefore contributions of Figs. 9a and 9d decay faster than ρ∗ exp(βEH). Figs. 9e and 9f
provide contributions obviously identical to that of Figs. 9b and 9c with α = p. In Figs. 9b
and 9c, all collective effects can be neglected at leading order, in particular φ(Ca,C1) can
be replaced by bare potential V (Ca,C1). Within that substitution, integrability at large dis-
tances R between Ca and C1, is obviously ensured thanks to dipole-charge 1/R2 decay of
V (Ca,C1). The resulting bare contributions of above graphs are rewritten in terms of matrix
elements of Gibbs operators similarly to (3.40). For instance, bare contribution of Fig. 9b
with α = p reads

z2
pze

∫
dR1dr1{8〈RaR1r1|

∫ β

0
dτ1

∫ τ1

0
dτ2 exp[−(β − τ1)(Hat + Hp)]Vat,p

× exp[−(τ1 − τ2)(Hat + Hp)]Vat,p exp[−τ2(Hat + Hp)]|RaR1r1〉 + · · ·} (3.44)

where Hp = H1,0 is the Hamiltonian of a single proton, while Vat,p is the total interaction
potential between an atom and a proton. Like in (3.40), terms · · · in (3.44) have a structure
analogous to those subtracted from exp(−βHpe) in (3.14), which ensures spatial integra-
bility over R1 and r1. Bare contributions of the other considered graphs can be expressed
similarly to (3.44).

As shown in Appendix C:, the full bare contribution of Figs. 9a–f behaves as

ρ∗γ 3[2W(1,1|1,0) + W(1,1|0,1)] exp(2βEH), (3.45)

plus terms which decay exponentially faster than ρ∗ exp(βEH) when β → ∞. Functions
W(1,1|1,0) and W(1,1|0,1) account for unscreened interactions between an atom in its
groundstate and an ionized charge. Their low-temperature behaviors are

W(1,1|1,0) ∼ cat,p

16π3/2(β|EH |)1/2
exp(−βEH),

W(1,1|0,1) ∼ cat,e

16π3/2(β|EH |)1/2
exp(−βEH)

(3.46)

where cat,α are pure numerical constants (C.3). Long-range contributions to W(1,1|1,0)

and W(1,1|0,1) do reduce to that of the attractive interactions UH−α(R) = −AH−α/R
4

between an atom H and an ionized charge, with positive constant AH−p = AH−e computed
within quantum perturbation theory at zero temperature.

First collective corrections result from plasma polarization by the considered ionized
charges, and they reduce to (3.45) multiplied by simple factor βe2κ/2 of order exp(βEH/2).
As for atom-atom interactions, part of further density corrections result from screening of
atom-proton or atom-electron interactions at large distances.

3.6 Interactions between an Ionized Proton and Charged Clusters

Screened interactions between an ionized proton and charged clusters are embedded in any
graph made with a root cluster Ca containing a single proton connected to a charged cluster
C1 via a bond −βΦ . As shown below, such a graph provides a contribution which behaves,
at leading order, as that of the part connected to Ca through C1. Moreover, that mechanism
enforces charge neutrality (ρp = ρe) by symmetrizing protonic and electronic contributions
to SCE of ρp .
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3.6.1 Two-Proton and Two-Electron Clusters

In Figs. 10a and 10b, C1 contains either two protons or two electrons. Leading contribution
of Fig. 10a arises from relative distances between clusters Ca and C1 of order κ−1, while
relative distances between particles inside cluster C1 are of order βe2. For such configura-
tions, Φ(Ca,C1) can be replaced by its Debye classical form −2βe2 exp(−κX)/X, where
X is the relative distance between Ca and C1 (cluster C1 carries a total charge 2e). At the
same time, statistical weights ZT

φ can be replaced by their bare forms. Then, integration
over internal degrees of freedom of C1 merely provides half contribution (3.21) of Fig. 6a
made with a single root cluster identical to C1: that factor 1/2 arises from the combinatorics
specific to root cluster of any graph (see comment after formula (2.38) and factor qa in the
corresponding contribution). Integration over internal degrees of freedom of Ca obviously
provides ρid

p , while the remaining spatial integration over X reduces to

∫
dX

[
−2βe2 exp(−κX)

X

]
= −8πβe2

κ2
= − 1

ρid
p

. (3.47)

Eventually, leading contribution of Fig. 10a is

−ρ∗ γ 2

2
√

2

(
m

mp

)3/2

Z(2,0) exp(βEH), (3.48)

i.e. minus half bare contribution (3.21) of Fig. 6a. Next corrections to (3.47) decay expo-
nentially faster than ρ∗ exp(βEH). A similar calculation provides leading contribution of
Fig. 10b

ρ∗ γ 2

2
√

2

(
m

me

)3/2

Z(0,2) exp(βEH), (3.49)

where we have used that C1 carries a charge −2e. Next corrections to (3.49) also decay
exponentially faster than ρ∗ exp(βEH).

3.6.2 Ions

Leading contributions of Figs. 10c and 10d can be treated as above. Taking into account that
ion H+

2 carries a charge e, we find for Fig. 10c

−ρ∗ γ 3

64

(
me(M + mp)

M2

)3/2

Z(2,1) exp(2βEH), (3.50)

Fig. 10 Graphs accounting for interactions between an ionized proton and a charged cluster
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i.e. minus one fourth bare contribution (3.26) of Fig. 6c. For Fig. 10d, no combinatorics
factor 1/2 appears when integrating over internal degrees of freedom of C1 because C1

contains a single proton. Since C1 carries a charge −e, leading contribution of Fig. 10d
becomes

ρ∗ γ 3

64

(
mp(M + me)

M2

)3/2

Z(1,2) exp(2βEH), (3.51)

i.e. half bare contribution (3.27) of Fig. 6d. Contributions (3.50) and (3.51) can be inter-
preted as the modification of density of ionized protons due to their coupling with ions H+

2
and H− respectively. As mentioned above, those contributions added to that of Figs. 6c and
6d provide a full contribution to ρp which is indeed identical to that relative to ρe . Thus,
charge neutrality is indeed enforced by the structure of SCE (2.37).

Next corrections to (3.50) and (3.51) decay exponentially faster than ρ∗ exp(βEH), as
well as all other non-ideal contributions of ions H+

2 and H−. Part of such contributions may
be related to modifications of screening length, which are taken into account by summing
suitable chain graphs (we have checked that this does provide the screening Debye length
for a mixture of ionized charges and ions).

3.6.3 Other Charged Clusters

Eventually, Figs. 11a–d made with three clusters Ca , C1 and C2, also provide leading
contributions of order ρ∗ exp(βEH) via the same mechanism as above. At leading order,
Φ(Ca,C1) can be replaced by its Debye classical form. Then, integrations over internal de-
grees of freedom of clusters C1 and C2, and over relative distance X2 − X1 between those
clusters, are identical (apart from obvious substitutions p → e) to those relative to Figs. 7b
(for 11a), 7c (for 11b), 9e (for 11c) and 9f (for 11d). Using again identity (3.47) for integra-
tion over X = X1 − Xa , and (A.7) for the integral of φ3, we obtain for Fig. 11b (C1 is made
with a single particle and carries a charge ±e)

ρ∗γ 2 (cp − ce)(β|EH |)3/2

24π3/2
exp(βEH), (3.52)

and for Figs. 11c and 11d

ρ∗ γ 3

2
[W(1,1|0,1) − W(1,1|1,0)] exp(2βEH). (3.53)

Total leading contribution of Fig. 11a vanishes by charge neutrality constraint (2.8). Next
corrections to (3.52) and (3.53) decay exponentially faster than ρ∗ exp(βEH).

Fig. 11 Graphs of order ρ∗ exp(βEH ) accounting for interactions between three clusters
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3.7 Contributions with Arbitrary Particle Numbers

The evaluation of any contribution arising from a graph GNp,Ne made with at least three
particles (Np + Ne ≥ 3), can be carried out by extending the methods described above for
graphs with few particles. The outlines of the analysis are briefly sketched below. We first
proceed to an estimation of the leading contribution. The behaviors of further collective
corrections are discussed afterwards.

3.7.1 Leading Contributions

∗ At leading order, we make the substitutions exp(IR) → 1 and BT
φ → BT in any weight

ZT
φ (Ci), and (exp(IR) − 1) → IR in specific weight (2.42). Moreover, we explicit each

D(Ci) in terms of spatial integrations over particle positions and of functional integrations
over Brownian bridges.

∗ Let consider two clusters Ci and Cj connected by a bond Fφ(Ci,Cj ). If one of them
is electrically neutral, i.e. it contains the same number of protons and electrons, φ can be
replaced by V in Fφ(Ci,Cj ). If both carry a net charge, φ must be replaced by its Debye
classical form φD .

∗ By virtue of Feynman-Kac formula, functional integrations over Brownian bridges
reduce to matrix elements of either exp(−βHMp,Me ), or interactions V evolved according to
exp(−τHMp,Me ) (0 ≤ τ ≤ β).

∗ In graphs only made with bare bonds, integrations over positions of particles provide
a function W accounting for bare interactions between clusters. If GNp,Ne contains a single
cluster, such integrations give raise to partition function Z(Np,Ne).

∗ When one or more bonds involve φD , positions of particles which belong to charged
clusters connected by such bonds, are rewritten in terms of relative positions inside a given
cluster and cluster position (arbitrarily defined as the position of a given particle). Let con-
sider a charged cluster C(Mp,Me) (Mp + Me �= 0), not connected to any neutral cluster.
Integration over its position X can be disentangled from integrations over internal relative
positions, since its internal weight BT decays on a scale βe2 much smaller than κ−1 which
controls the decay of φD . Integration over its internal relative positions provide partition
function Z(Mp,Me). Integration over X is performed by rescaling X in units of κ−1. This
provides multiplicative inverse powers of κ , with possible logarithmic terms ln(κλ) arising
from integrands built with φ3

D .
∗ According to above analysis and prescriptions, the leading contribution of GNp,Ne can

be rewritten as (apart from a pure numerical coefficient which depends on ratio me/mp)

ρ∗γ Np+Ne−P/2 exp[β(Np + Ne − 1 − P/2)EH ]
∏

Z
∏

W (3.54)

where each Z and each W depends only on temperature, while P is a positive integer.
Term γ −P/2 exp(−PβEH/2) arises from contribution 1/κP , which is generated by both
integrations over positions of charged clusters and specific weights IR proportional to κ

(P = 0 when GNp,Ne contains only neutral clusters).
∗ The low-temperature behaviors of functions Z and W can be inferred from the meth-

ods exposed in Appendix B:. If there exists a bound state made with Mp protons and Me

electrons, partition function Z(Mp,Me) then behaves as

exp(−βE
(0)
Mp,Me

), (3.55)
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apart from a multiplicative integer which accounts for groundstate degeneracy. In the other
case, asymptotic behavior (3.55) has to be multiplied by some power of β . A given inter-
action function W behaves as the product of Boltzmann factors (3.55) associated with each
interacting cluster times a power of β .

∗ According to the above low-temperature behaviors of Z and W , leading contribution
(3.54) of GNp,Ne reduces to ρ∗γ Np+Ne−P/2 times a power of β times

exp[β(Np + Ne − 1 − P/2)EH ]
∏

exp(−βE
(0)
Mp,Me

) (3.56)

when β → ∞. The precise form of factor (3.56) has been studied above for several graphs
GNp,Ne . For all other graphs, we have checked that (3.56) is exponentially smaller than
exp(βEH). In particular, ideal contributions of complex entities made with more than four
particles can be omitted at considered order. The analysis is achieved by using the known
values of EH+

2
, EH− and EH2 given in Sect. 2.2, as well as inequality (2.31) for Mp +

Me ≥ 5. Neutrality constraint (2.8) ensures the cancellation of the leading contributions of
graphs which differ only by ending clusters made with either a single proton or a single
electron: above statement then applies, strictly speaking, to the leading contribution of the
sum of those graphs (for instance, see graphs G1,1 and G2,0 shown in Fig. 7a).

3.7.2 Collective Corrections

∗ Collective corrections are obtained by expanding ring factors exp(IR) in powers of IR ,
and truncated Mayer coefficients BT

φ in powers of (φ − V ). At the same time, both IR and
(φ − V ) are expanded in positive integer powers of κλ as described in Appendix A:. Then,
integration over cluster degrees of freedom involved in previous expansions, provide screen-
ing functions S. For a given graph GNp,Ne , the resulting corrections take the general form

ρ∗γ Np+Ne−P/2+L/2 exp[β(Np + Ne − 1 − P/2 + L/2)EH ]
∏

Z
∏

W
∏

S (3.57)

with L a positive integer.
∗ The low-temperature behavior of S is analogous to those of Z and W , and it reduces to

the product of a power of β times groundstate Boltzmann factors (3.55) associated with each
cluster involved in S (for instance, see the calculation of S3(1,1) detailed in Appendix A:).
Thus, and as expected from the weakly-coupled conditions enforced in the Saha regime,
any correction (3.57) arising from GNp,Ne becomes exponentially smaller than its leading
contribution (3.54) when β → ∞. Collective corrections arising from graphs considered in
Sects. 3.1–3.6 have been explicitly computed up to order ρ∗ exp(βEH) included. All other
corrections, in particular those arising from other graphs, decay exponentially faster than
ρ∗ exp(βEH).

4 Scaled Low-Temperature Expansions

According to the analysis of Sect. 3, we derive the structure of the asymptotic expansion
of ρ/ρ∗ (Sect. 4.1). Then, we proceed to the calculation of the pressure as a function of ρ

(EOS), by using thermodynamical identities (Sect. 4.2). We derive the corresponding expan-
sion around ideal Saha pressure (1.3), and the first four corrections are explicitly computed.
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4.1 Structure of the Asymptotic Expansion of Particle Density

According to Sect. 3.7, every contribution arising from any graph GNp,Ne can be rewritten
as ρ∗ times γ n times a temperature-dependent function. Power n is integer or half-integer,
n ≥ 1, while γ n may be multiplied by integer powers of lnγ (it is not necessary to write
explicitly such logarithmic terms since they do not play any role in the following). For a
given n, there is a finite number of contributions proportional to γ n, i.e. such that Np +
Ne − P/2 + L/2 = n. Their sum can be recast as

ρ∗γ ngn(β) exp(β(n − 1)EH ). (4.1)

Functions gn(β) are expressed in terms of bare partition functions Z(Mp,Me) of clusters
(Mp,Me), bare interactions W between clusters, and screening functions S which may in-
volve either a single or various clusters. Roughly speaking, the number of involved graphs,
as well as the maximum total particle number Np + Ne , increase with n.

Taking into account the results derived in Sect. 3, screened cluster expansion of common
particle density ρ = ρp = ρe can be formally rewritten as

ρ/ρ∗ = γ + γ 2

2
+ γ 3/2g3/2(β) exp(βEH/2) + γ 2g2,exc(β) exp(βEH)

+
∞∑

n=5/2

γ ngn(β) exp(β(n − 1)EH ) (4.2)

where the sum runs over integer and half-integer values of n. In (4.2), we have extracted in
γ 2g2(β) exp(βEH) contribution (3.16) of atoms H in their groundstate, while the remaining
part defines g2,exc(β). First two functions g3/2 and g2,exc are

g3/2(β) = S3/2(1,0) (4.3)

according to (3.4), and

g2,exc(β) = 1

2
[S2(1,0) + S2(0,1)] + W(1,0|1,0) + W(1,0|0,1)

− (cp + ce)(β|EH |)3/2

24π3/2

+ 1

8

[
Zexc(1,1) +

(
2m

mp

)3/2

Z(2,0) +
(

2m

me

)3/2

Z(0,2)

]
(4.4)

by summing (3.7), (3.17), (3.21), (3.33), (3.36), (3.39), (3.48), (3.49) and (3.52). Notice that
(4.4) is symmetric with respect to permutations of species indexes p and e in agreement
with ρp = ρe.

We stress that, in the Saha regime, γ is a fixed parameter not necessarily small, while
β → ∞. Then, functions g2,exc(β) exp(βEH) and gn(β) exp(β(n − 1)EH ) with n ≥ 3/2
and n �= 2, decay exponentially fast. Thus, the whole sum over n in (4.2) can be reordered
according to the corresponding decay rates. Each term γ ngn(β) exp(β(n − 1)EH ) is then
rewritten as γ nhk(β) where k = k(n) is some integer. Functions hk decay exponentially
fast, i.e. hk(β) ∼ exp(−βδk) (apart from powers of β), with decay rates δk ranked as 0 <

δ1 < δ2 < · · ·: hk+1 decays exponentially faster than hk when β → ∞. According to the
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analytic results derived in Sects. 3.1–3.7 on the one hand, and to the numerical values of
EH ,EH− ,EH+

2
,EH2 (see Sect. 2.3) on the other hand, we find

h1(β) = g3/2(β) exp(βEH/2), n1 = 3/2,

h2(β) = g4(β) exp(3βEH), n2 = 4,

h3(β) = g2,exc(β) exp(βEH), n3 = 2,

h4(β) = g3(β) exp(2βEH), n4 = 3.

(4.5)

Their corresponding decay rates δk can be found in the table (1.5) given in the Intro-
duction, while all higher-order functions hk(β) with k ≥ 5 decay exponentially faster
than exp(βEH), i.e. their decay rates δk are larger than |EH | � 13.6. Notice that both
γ 5/2g5/2(β) exp(3βEH/2) and γ 7/2g7/2(β) exp(5βEH/2) decay faster than exp(βEH), so
both k(5/2) and k(7/2) are strictly larger than 4. Within previous reordering, (4.2) becomes

ρ/ρ∗ = γ + γ 2

2
+

∞∑

k=1

γ nkhk(β). (4.6)

At order exp(βEH) included, all terms with k ≥ 5 can be omitted in (4.6). Moreover,
for the sake of consistency, it is sufficient to compute functions hk with 1 ≤ k ≤ 4 at the
same order (beyond its leading behavior exp(−βδk), hk involves other exponentially small
contributions). This gives

h1(β) = (β|EH |)3/4

π1/4
exp(βEH/2), (4.7)

h2(β) = 1

64

(
2m

M

)3/2

Z(2,2) exp(3βEH) + W(1,1|1,1) exp(3βEH), (4.8)

h3(β) = −1

2
+

[
1 + 1

12
ln

(
4m

M

)]
(β|EH |)3/2

π1/2
exp(βEH)

+ 1

8π1/2

{
2Q(xpe) +

(
2m

mp

)3/2[
Q(−xpp) − 1

2
E(−xpp)

]

+
(

2m

me

)3/2[
Q(−xee) − 1

2
E(−xee)

]}
exp(βEH), (4.9)

and

h4(β) = 3

64

[(
me(M + mp)

M2

)3/2

Z(2,1) +
(

mp(M + me)

M2

)3/2

Z(1,2)

]
exp(2βEH)

+ S3(1,1) exp(2βEH) + 3

2
[W(1,1|1,0) + W(1,1|0,1)] exp(2βEH). (4.10)

In (4.7) and (4.9), full contributions of respectively g1 and g2,exc, are kept, while analytic
expressions (3.3), (3.8), (3.34), (3.37) and (3.39) have been used. Moreover, and accord-
ing to formula (A.12) derived in Appendix A:, Zexc(1,1), Z(2,0) and Z(0,2) have been
expressed in terms of Ebeling quantum virial functions Q (direct part) and E (exchange
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part) defined in Ref. [39], with arguments xpe = 2(β|EH |)1/2, xpp = (2mp/m)1/2(β|EH |)1/2

and xee = (2me/m)1/2(β|EH |)1/2. Term −1/2 in h3(β) subtracts the ground-state contri-
bution included in function Q(xpe). In (4.8) and (4.10), contributions of g4 and g3 which
decay exponentially faster than exp(βEH) have been omitted. The resulting expression for
h2 is obtained by summing (3.23) and (3.41). Similarly, expression (4.10) for h4 follows by
summing (3.26), (3.27), (3.50), (3.51), (3.19), (3.45) and (3.53).

As a conclusion, it is useful to summarize the main features and ingredients of ex-
pansion (4.6). The hk-functions are ordered, at sufficiently low temperatures, according to
|h1(β)| > |h2(β)| > |h3(β)| > |h4(β)| > · · ·. They incorporate corrections to ideal Saha
equation which arise from different physical phenomena, as listed in the Introduction. Ex-
plicit expressions for h1(β) and h3(β) are known, see (4.7) and Ref. [39], while h2(β)

and h4(β) involve integrals associated with 3-body and 4-body problems which cannot be
expressed in closed analytical forms. In h2(β), the internal partition function Z(2,2) of
a hydrogen molecule is defined in (3.24), and its low-temperature form is determined in
Appendix B:. The function W(1,1|1,1), which accounts for atom-atom interactions, is de-
fined in (3.41), and its low-temperature form is computed in Appendix C:. In h4(β), the
internal partition functions Z(2,1) and Z(1,2) of ions H+

2 and H− are defined in (3.28)
and (3.29) respectively, while their asymptotic expressions at low temperatures are derived
in Appendix B:. The interactions W(1,1|1,0) and W(1,1|0,1) between an atom and an
ionized proton or electron, are defined in (3.45) and their low-temperature expressions are
given in Appendix C:. Eventually, the screening function S3(1,1) of a hydrogen atom ac-
counts for collective corrections to the bare proton-electron Coulomb potential beyond the
familiar Debye shift, and it is given by formula (A.16) at low temperatures.

4.2 Equation of State

In order to compute the pressure, we consider identities

ρp = zp

∂βP

∂zp

,

ρe = ze

∂βP

∂ze

.
(4.11)

Taking into account that P depends only on z and β , and using parametrization of z in terms
of β and γ , z = (m/M)3/4γ exp(βEH)/4, we rewrite such identities as

∂βP

∂γ
= 2ρ

γ
, (4.12)

where partial derivative of βP with respect to γ is taken at fixed β . After inserting expansion
(4.6) of ρ into the r.h.s. of (4.12), a straightforward term by term integration with respect to
γ provides

βP/ρ∗ = 2γ + γ 2

2
+

∞∑

k=1

2γ nk

nk

hk(β). (4.13)

The required equation of state follows by inserting into (4.13) the expression of γ in terms
of ρ obtained from the inversion of (4.6). That inversion can be performed perturbatively
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around the simple expression

γSaha = (1 + 2ρ/ρ∗)1/2 − 1 (4.14)

obtained by retaining only the first two terms of (4.6). The resulting SLT expansion of the
pressure takes the form (1.1) presented in the Introduction where βPSaha/ρ

∗ is given by
(1.3). The general structure of βPk/ρ

∗ reduces to a function of ρ/ρ∗ times a polynomial in
the hl(β)’s with l ≤ k. Therefore, for a fixed ratio ρ/ρ∗, corrections βPk/ρ

∗ decay expo-
nentially fast when β → ∞. Moreover, each βPk+1/ρ

∗ decays faster than βPk/ρ
∗ for k ≥ 0

(with P0 = PSaha). First corrections in (1.1) read

βP1/ρ
∗ = [(1 + 2ρ/ρ∗)1/2 − 3][(1 + 2ρ/ρ∗)1/2 − 1]3/2

3(1 + 2ρ/ρ∗)1/2
h1(β), (4.15)

βP2/ρ
∗ = −[(1 + 2ρ/ρ∗)1/2 + 2][(1 + 2ρ/ρ∗)1/2 − 1]4

2(1 + 2ρ/ρ∗)1/2
h2(β), (4.16)

βP3/ρ
∗ = −[(1 + 2ρ/ρ∗)1/2 − 1]2

(1 + 2ρ/ρ∗)1/2
h3(β), (4.17)

βP4/ρ
∗ = −[(1 + 2ρ/ρ∗)1/2 + 3][(1 + 2ρ/ρ∗)1/2 − 1]3

3(1 + 2ρ/ρ∗)1/2
h4(β), (4.18)

and

βP5/ρ
∗ = [(1 + 2ρ/ρ∗)1/2 − ρ/ρ∗][(1 + 2ρ/ρ∗)1/2 − 1]2

(1 + 2ρ/ρ∗)3/2
[h1(β)]2. (4.19)

Next correction βP6/ρ
∗ decays faster than exp(βEH).

In previous corrections βPk/ρ
∗, functions h1(β) and h3(β) can be expressed in closed

analytical forms according to (4.7) and (4.9) respectively. Similar analytical expressions for
h2(β) and h4(β) are not available. Nevertheless, the low-temperature behaviors of those
functions are exactly known, i.e.

h2(β) ∼ 1

64

(
2m

M

)3/2

exp(β(3EH − EH2)) (4.20)

and

h4(β) ∼ 3

64

(
me(M + mp)

M2

)3/2

exp(β(2EH − EH+
2
)) (4.21)

when β → ∞.
Eventually, the various terms in (1.1) display interesting behaviors with respect to ratio

ρ/ρ∗, at fixed β sufficiently large:

• For ρ much smaller than ρ∗, each βPk/ρ
∗, as well as βPSaha/ρ

∗, can be expanded in pow-
ers of ρ/ρ∗. This leads to the virial expansion of βP in powers of ρ. Since all βPk/ρ

∗’s
for k ≥ 6 are at least of order ρ5/2, the full contribution of terms with k ≤ 5 in (1.1)
provides the expansion of βP up to order ρ2, i.e.

βP = 2ρ − 23/2(2π)3/4

3
(λpe)

3/2 exp(−βEH/2)h1(β)ρ3/2
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− (2π)3/2(λpe)
3 exp(−βEH)[2h3(β) + 1 − 2(h1(β))2]ρ2 + O(ρ5/2)

= 2ρ − (8πβe2ρ)3/2

24π
− π√

2

{
2λ3

peQ(xpe) + λ3
pp

[
Q(−xpp) − 1

2
E(−xpp)

]

+ λ3
ee

[
Q(−xee) − 1

2
E(−xee)

]}
ρ2 − π

6
ln

(
4m

M

)
β3e6ρ2 + O(ρ5/2) (4.22)

which does coincide with the well known expression derived previously by other methods
[4, 23, 39] (λpe = (β�

2/m)1/2, λpp = (β�
2/mpp)1/2 and λee = (β�

2/mee)
1/2). Notice that

contribution of βP4 is of order ρ3, while that of βP2 is of order ρ4.
• For ρ of order ρ∗, leading term βPSaha/ρ

∗, as well as each correction βPk/ρ
∗, can be

viewed as infinite resummations of terms with arbitrary high orders in the above low-
density expansion. Such resummations account, in a non-perturbative way with respect
to density, of recombination processes for any value of the ionization rate. The relative
orders of magnitude of the various corrections to Saha pressure are mainly controlled
by their decay rates δk . Therefore the larger correction indeed is βP1, which results
from plasma polarization around a given ionized charge, evaluated within Debye clas-
sical mean-field theory. That result is equivalent to the modified Saha condition which
determines the ionization rate [39, 41].

• For ρ much larger than ρ∗, βPSaha behaves as

βPSaha ∼ ρ, (4.23)

which illustrates the almost full atomic recombination of the plasma. The larger correction
to Saha pressure is now βP2 which behaves as

βP2 ∼ −2h2(β)ρ∗
(

ρ

ρ∗

)2

, (4.24)

so it overcomes βP1 which grows only as (ρ/ρ∗)3/4, as well as further corrections βP3 ∼
(ρ/ρ∗)1/2, βP4 ∼ (ρ/ρ∗)3/2 and βP5 ∼ (ρ/ρ∗)1/2. Therefore molecular recombination
prevails over plasma polarization. Of course, expansion (1.1) is no longer appropriate for
too large values of ratio (ρ/ρ∗), since some corrections βPk/ρ

∗ become much larger than
Saha pressure.

4.3 Numerical Estimations and Validity Domain of SLT Expansions

Quantitative estimations of corrections βP1/ρ
∗, βP3/ρ

∗ and βP5/ρ
∗ are easy, because func-

tions h1(β) and h3(β) can be represented by simple analytical expressions at finite temper-
ature. For functions h2(β) and h4(β) which involve 3 and 4-body contributions, no explicit
finite-T representations are available beyond their low-temperature asymptotic forms de-
termined in Appendices B and C. In order to obtain reliable values for those functions at
moderate temperatures, we have used a simple approach in which important finite temper-
ature effects (such as atomic vibrations and rotations) are phenomenologically taken into
account. As mentioned in the Introduction, the corresponding numerical evaluations of the
various corrections to Saha pressure (and internal energy), together with a comparison of our
predicted isotherms with the results of PIMC simulations, will be presented in a forthcoming
paper [1].

Here, we exhibit the validity domain of SLT expansion (1.1). A rigorous analysis of the
convergence of that expansion is a tremendous mathematical task, much beyond the scope
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Fig. 12 Phase diagram showing the validity domains of SLT expansion (1.1) (hatched region) and of the
virial expansion (shaded region). Atomic recombination density ρ∗(β) (1.2) is a straight line at low tem-
peratures in the (β, logρ)-plane. The validity domain is delimited at high densities, and for temperatures
below 10000 K, by critical density ρc(β) at which molecular recombination occurs. Crosses indicate state
points where simulation results are available [48]. State points of astrophysical systems (Sun photosphere and
Brown dwarfs) are also shown in the diagram

of the present work. We estimated a quite plausible validity domain, by employing the semi-
empirical criterion |Pk| < PSaha/10 for all five corrections (1 ≤ k ≤ 5): it covers the region
hatched in the temperature-density plane shown in Fig. 12. The shaded region at low den-
sities and high temperatures corresponds to the validity domain of the virial expansion (i.e.
low-density expansion at fixed temperature) determined from a similar criterion. Obviously,
SLT expansion improves widely upon virial expansion, by providing reliable results in the
atomic phase, including the temperature and density ranges around ρ�(β) which correspond
to partially ionized hydrogen gases. In Fig. 12, we have also shown state points, symbol-
ized by crosses, for which PIMC simulation results have been obtained [48]. It turns out
that some of them lie within the validity domain of the SLT expansion. We have checked
that our calculations, both for pressure and internal energy, are in agreement with PIMC
results within statistical errors [1]. This confirms the reliability of SLT expansions in the do-
main inferred from the above semi-empirical criterion. Notice that such domain extends to
rather high densities, up to a/aB = 6 at 15000 K, which corresponds to a mean inter-particle
distance of the order of twice the size of a hydrogen atom.

For temperatures below 10000 K, the validity domain is limited at high densities by
molecular recombination which occurs around densities ρc(β) shown as a dashed line in the
phase diagram. That limitation is not intrinsic to the theory, and an SLT expansion applica-
ble in the molecular regime can be derived as well. Such a generalization requires replacing
the scaling (2.12) of the chemical potential by a similar scaling corresponding to a molec-
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ular regime (see Fig. 2), and performing the inversion μ = μ(ρ) in the appropriate density
range. Notice that if ρ is not too high above ρc , expansion (4.6) of particle density in terms
of chemical potential should remain valid. Performing a non-perturbative inversion of the
chemical potential in favor of the density, should then provide accurate thermodynamical
functions which account not only for atomic recombination at ρ ∼ ρ∗, but also for molecu-
lar recombination above ρc .

For temperatures above 10000 K, the borderline of the validity domain has a compli-
cated shape determined by correction term P3 which accounts for atomic excitations and for
interactions between ionized electrons and protons. At high temperatures, typically above
30000 K, thermal ionization prevents recombination of protons and electrons into atoms, and
our validity criterion is then equivalent to a weak coupling condition for ionized charges, i.e.
coupling parameter Γ = βe2/a smaller than some value, which also determines the validity
of the virial expansion.

Eventually, state points of two astrophysical systems of interest, Sun photosphere and
a typical brown dwarf atmosphere, are also shown in Fig. 12. Our equation of state (1.1)
clearly holds at the temperature and density of Sun photosphere. In order to be applicable to
brown dwarf atmospheres, the SLT expansion would need to be generalized to the molecular
regime, as discussed above.

Acknowledgements We are very indebted to Vincent ROBERT (Laboratoire de Chimie, ENS Lyon, CNRS)
for his efficient and kind support. We thank him in particular for his spectroscopic calculations (ground state
energies and excitations energies of a few compounds) which we used in Sect. 2.3 [52].

Appendix A: Screened Potential and Related Integrals

A.1 Expression and Behavior of φ

The Fourier transform of φ(Li ,Lj ) with respect to Xi − Xj reads

φ̃(k, χi, χj ) = eαi
eαj

∫ qi

0
ds

∫ qj

0
dt exp[ik · (λαi

ηi (s) − λαj
ηj (t))]

×
∞∑

n=−∞

4π

k2 + κ2(k, n)
exp[−2nπi(s − t)], (A.1)

where χ = (α, q,η(·)) denotes the loop internal degrees of freedom, while function κ2(k, n)

is defined in Ref. [13]. Functions κ2(k, n) are analytical in k2 near k = 0, while κ2(0, n) = 0
for n �= 0 and κ2(0,0) �= 0 is of order κ2 . For large values of k, κ2(k, n) remains bounded
by a constant independent of n (of order κ2). For k ∼ κ , κ2(k, n) for n �= 0 is smaller than
κ2(k,0) by a factor of order κ2λ2, while κ2(k,0) can be replaced by κ2.

The behaviors of φ with respect to relative distance r = |Xi − Xj | (roughly described in
Fig. 4), can be readily derived from those of φ̃ with respect to k, as detailed in Ref. [13].
Here, we briefly summarize that analysis. For k � κ , each fraction 4π/(k2 + κ2(k, n))

can be replaced by 4π/k2 in (A.1), so φ(Li ,Lj ) behaves as V (Li ,Lj ) at short dis-
tances r � κ−1. At distances r ∼ κ−1, we recover the Debye classical form φD(Li ,Lj ) =
qieαi

qj eαj
exp(−κr)/r , by noting that terms n �= 0 in (A.1) provide contributions smaller

than the one of n = 0 by a factor of order κ2λ2. Eventually, terms n �= 0 in (A.1) provide
a singularity in the small-k expansion of φ̃(k, χi, χj ), which in turn induces a dipolar-like
decay of φ(Li ,Lj ) at large distances r � lQ.
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A.2 Integrals of Powers of φ

We consider φ(L(p)
a ,L(p,e)

1 ) where loops L(p)
a and loop L(p,e)

1 contain, respectively, one pro-
ton (qa = 1) and either one proton or one electron (q1 = 1). According to the definition of
φ̃(k, χa,χ1), the integral of φ(L(p)

a ,L(p,e)

1 ) over X1 and ξ 1 = η1 is nothing but
∫

dX1

∫
D(ξ 1)φ(L(p)

a ,L(p,e)

1 ) =
∫

D(ξ 1)φ̃(0, χa,χ1). (A.2)

The r.h.s. of (A.2) is computed by taking the limit k → 0 of expression (A.1). The cor-
responding contribution of a term n �= 0 is obtained by expanding phase factor exp[ik ·
(λpξ a(s) − λp,eξ 1(t))] in powers of k. Since all odd moments of measure D(ξ 1) van-

ish, as well as
∫ 1

0 dt exp(2nπit), the first non-vanishing term in that expansion is at least
of order k3. It has to be multiplied by a factor of order 1/k2 which arises from fraction
4π/(k2 + κ2(k, n)), so the resulting contribution to the r.h.s. of (A.2) vanishes. Therefore,
the sole contribution arises from term n = 0, i.e.

∫
dX1

∫
D(ξ 1)φ(L(p)

a ,L(p,e)

1 ) = ± 4πe2

κ2(0,0)
, (A.3)

with a positive sign for L(p)

1 and a negative one for L(e)

1 .
According to Fourier-Plancherel formula, the integral of [φ(L(p)

a ,L(p,e)

1 )]2 over X1, ξ a =
ηa and ξ 1 = η1, is rewritten as

∫
dX1

∫
D(ξ a)D(ξ 1)[φ(L(p)

a ,L(p,e)

1 )]2

= 1

(2π)3

∫
dk

∫
D(ξ a)D(ξ 1)|φ̃(k, χa,χ1)|2

= 2e4

π

∫
dk

∫ 1

0
ds1

∫ 1

0
dt1

∫ 1

0
ds2

∫ 1

0
dt2

×
∞∑

n1,n2=−∞

exp[−2n1πi(s1 − t1)]
k2 + κ2(k, n1)

exp[−2n2πi(s2 − t2)]
k2 + κ2(k, n2)

×
∫

D(ξ a) exp[iλpk · ξ a(s1 − s2)]
∫

D(ξ 1) exp[−iλp,ek · ξ 1(t1 − t2)]. (A.4)

In the last equality of (A.4), we have used that the average over shape ξ of any function
f (ξ a(s1) − ξ a(s2)) is identical to the average of f (ξ a(s1 − s2)), provided that ξ(s) for s

outside [0,1] is defined as equal to ξ(s − [s]) [13]. Within variable change k = κq, we
can replace κ2(κq,ni) by either κ2 for ni = 0, or 0 for ni �= 0, discarding terms which
provide contributions smaller by a factor (κλ)2 at least. Summations over ni �= 0 are then
performed according to identity

∑
n�=0 exp[−2nπi(s − t)] = δ(s − t) − 1. Since measure

D(ξ) is Gaussian with covariance (2.34) (for q = 1), we transform (A.4) into

8e4

κ

∫ 1

0
ds

∫ 1

0
dt

∫ ∞

0
dq

q2

(q2 + 1)2
exp[−κ2λ2

pq2s(1 − s)/2 − κ2λ2
p,eq

2t (1 − t)/2]

+ 8e4

κ

∫ 1

0
ds

∫ ∞

0
dq

1

q2
{exp[−κ2(λ2

p + λ2
p,e)q

2s(1 − s)/2] − 1}
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− 8e4

κ

∫ 1

0
ds

∫ 1

0
dt

∫ ∞

0
dq

1

q2

× {exp[−κ2λ2
pq2s(1 − s)/2 − κ2λ2

p,eq
2t (1 − t)/2] − 1} (A.5)

discarding terms of order κ−1O((κλ)2). The integrals over q in (A.5) are computed in terms
of elementary functions of arguments [κ2λ2

ps(1 − s)/2 + κ2λ2
p,et (1 − t)/2]1/2 and [κ2(λ2

p +
λ2

p,e)s(1−s)/2]1/2, which can be expanded in Taylor series since κλ is small. For the leading
(order κ−1) and first subleading (order κ−1O(κλ)) contributions, the remaining integrals
over s and t are readily calculated (some complicated double integrals over s and t arising
from respectively first and third terms in (A.5) cancel out). Eventually, we obtain

∫
dX1

∫
D(ξ a)D(ξ 1)[φ(L(p)

a ,L(α)

1 )]2 = 2πe4

κ

[
1 −

√
π

2
√

2
κλpα + O((κλ)2)

]
. (A.6)

The integral of [φ(L(p)
a ,L(α)

1 )]3 over X1, ξ a and ξ 1, can be evaluated within similar tech-
niques and tricks. Discarding terms of order O(κλ), its leading behavior reduces to a con-
stant times ln(κλpα) plus another constant. When the two integrals corresponding respec-
tively to α = p and α = e are summed together, logarithmic terms in κ cancel out. Therefore,
we obtain

∫
dX1

∫
D(ξ a)

∫
D(ξ 1)[(φ(L(p)

a ,L(p)

1 ))3 + (φ(L(p)
a ,L(e)

1 ))3] = cpe6 + O(κλ) (A.7)

where cp is the constant

cp = 2

π3

∫ 1

0
ds

∫ s

0
dt

∫
dq1

∫
dq2

1

q2
1q2

2 |q1 + q2|2
× {exp[−(q2

1 s(1 − s) + q2
2 t (1 − t) + 2q1 · q2t (1 − s))]

− exp[−(q2
1 s(1 − s) + q2

2 t (1 − t) + 2q1 · q2t (1 − s))mp/(2m)]} (A.8)

entirely determined by ratio mp/m. As it should, leading contribution cpe6 in (A.7) is noth-
ing but the value of the considered integral with bare potential V in place of φ (that bare
integral does converge thanks to the 1/|X1|4-decay of [V (L(p)

a ,L(p)

1 )]3 + [V (L(p)
a ,L(e)

1 )]3).
When the root proton is replaced by a root electron (L(p)

a → L(e)
a ), the resulting integral

behaves similarly to (A.7) where constant ce is given by (A.8) with me in place of mp .

A.3 Behavior of IR

We consider a loop L containing a single particle of species α. Convolution formula (2.40)
for IR(L) is first transformed according to Fourier-Plancherel identity, in which φ̃(k, χa,χ1)

is replaced by (A.1). Discarding terms smaller by a factor O((κλ)2), only the contributions
of loops L(p,e)

1 associated with a single proton or a single electron, are retained. Moreover,
at the same order, after making variable change k = κq, we can replace κ2(κq,n) by either
κ2 for n = 0, or 0 for n �= 0. Using again identity

∑
n�=0 exp[−2nπi(s − t)] = δ(s − t) − 1,

we then obtain

IR(L) = βe2κ

2
+ βe2κ

4π2

∑

γ

∫ 1

0
ds

∫ 1

0
ds1

∫ 1

0
dt1

∫
D(ξ 1)

∫
dq

1

q2(q2 + 1)
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× [exp(iκq · (λαξ(s) − λγ ξ 1(s) + λγ ξ 1(s1) − λαξ(t1))) − 1]

+ βe2κ

4π2

∑

γ

∫ 1

0
ds

∫ 1

0
ds1

∫ 1

0
dt1

∫
D(ξ 1)

∫
dq

1

q4

× exp(iκq · (λαξ(s) − λγ ξ 1(s) + λγ ξ 1(s1)))

× [exp(−iκq · λαξ(s1)) − exp(−iκq · λαξ(t1))] + βe2κO((κλ)2). (A.9)

The leading behavior of IR(L) reduces to the first term in the r.h.s. of (A.9). In the second
term of (A.9), we can first perform the integration over q thanks to Cauchy’s theorem. The
resulting elementary functions of the argument κ|λαξ(s) − λγ ξ 1(s) + λγ ξ 1(s1) − λαξ(t1)|
are then expanded in Taylor series since κλ is small. The remaining integrations over times
and shape ξ 1 provide a contribution of order βe2κO(κλ) which depends on ξ . The third
term in the r.h.s. of (A.9) has the same order and a similar shape-dependence, as shown
by variable changes q = κ|λαξ(s) − λγ ξ 1(s) + λγ ξ 1(s1) − λαξ(t)|u with t = s1 or t = t1
(the integral over q is splitted as the sum of two integrals by adding and subtracting 1 to
[exp(−iκq · λαξ(s1)) − exp(−iκq · λαξ(t1))]).

The integration of IR(L) over shape ξ readily follows from (A.9). Now in the second
and third terms of (A.9), it is convenient to first perform integration over shapes ξ and ξ 1,
using the previous trick relative to differences ξ(s)− ξ(t1) and ξ 1(s)− ξ 1(s1), as well as the
Gaussian nature of measures D(ξ) and D(ξ 1). This leads to

∫
D(ξ)IR(L) = βe2κ

2
+ βe2κ

π

∑

γ

∫ 1

0
ds1

∫ 1

0
dt1

∫ ∞

0
dq

1

(q2 + 1)

× {exp[−κ2λ2
γ q2s1(1 − s1)/2 − κ2λ2

αq
2t1(1 − t1)/2] − 1}

+ βe2κ

π

∑

γ

∫ 1

0
ds1

∫ ∞

0
dq

1

q2
{exp[−κ2(λ2

α + λ2
γ )q2s1(1 − s1)/2] − 1}

− βe2κ

π

∑

γ

∫ 1

0
ds1

∫ 1

0
dt1

∫ ∞

0
dq

1

q2

× {exp[−κ2λ2
γ q2s1(1 − s1)/2 − κ2λ2

αq
2t1(1 − t1)/2] − 1}

+ βe2κO((κλ)2). (A.10)

The integrals over q in the second, third and fourth terms of (A.10) are computed, similarly
to that arising in (A.5), in terms of elementary functions which are afterwards expanded in
powers of κλ. Contributions of second and fourth terms with order βe2κO(κλ) cancel out,
so it remains

∫
D(ξ)IR(L) = βe2κ

2

[
1 −

√
π

8
√

2

∑

γ

κλαγ + O((κλ)2)

]
. (A.11)

A.4 Truncated Integrals of Powers of V

Quantum virial functions Q(±xαγ ) are defined [39] through a truncation similar to that
arising in 〈r|[exp(−βHαγ )]TMayer|r〉, where matrix elements of time-evolved operators Vαγ

and [Vαγ ]2 are replaced by βeαeγ /r and β2e4/r2 respectively, while [Vαγ ]3-term is omitted.
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Within such truncation, convergence at large distances is ensured by taking the limit R → ∞
of the corresponding spatial integral inside a sphere with radius R plus logarithmic counter
terms [39]. When partition functions Zexc(1,1), Z(2,0) and Z(0,2) are expressed in terms
of the Q’s and E’s, the integrals arising from Vαγ − eαeγ /r , V 2

αγ − e4/r2 and [Vαγ ]3 are
computed within previous methods applied to similar integrals of powers of φ. The sum of
contributions due to Vαγ − eαeγ /r vanishes by virtue of identity λ2

pp + λ2
ee − 2λ2

pe = 0. We
then find

1

8

[
Zexc(1,1) +

(
2m

mp

)3/2

Z(2,0) +
(

2m

me

)3/2

Z(0,2)

]

= 1

8π1/2

{
2Q(xpe) +

(
2m

mp

)3/2[
Q(−xpp) − 1

2
E(−xpp)

]

+
(

2m

me

)3/2[
Q(−xee) − 1

2
E(−xee)

]}

− 1

2
exp(−βEH) + β2e4

32λ3
pe

(2λpe + λpp + λee) + β3e6

24(2πλ2
pe)

3/2
(cp + ce)

+ β3e6

12(2π)1/2λ3
pe

ln(λppλee/λ
2
pe). (A.12)

In the r.h.s of (A.12), the first additional term to the linear combination of the Q’s and E’s
merely arises from the substraction of groundstate contribution in Zexc(1,1), while the last
one is due to the logarithmic counter terms introduced in the definitions of the Q’s.

A.5 Integral Mixing φ, IR and V

At lowest order, effects of atom polarization are entirely embedded in the integral

4z2

(2πλ2)3Λ

∫
dRdr

∫
D(ξ a)D(ξ 1)BT (a,1)

× [IR(Lp
a ) + IR(Le

1) − β(φ(Lp
a ,Le

1) − V (Lp
a ,Le

1))] (A.13)

where we set R = Ra and r = r1. Similarly to the case of bare integral (3.10), the pres-
ence of Boltzmann factor exp(−βV (Lp

a ,Le
1)) in BT (a,1) implies that leading contributions

in (A.13) arise from configurations where loop sizes are at most of order λ, while relative
proton-electron distance |r − R| is of order the extension aB of the atom groundstate. The
IR’s are then expanded with respect to small parameter κλ as above, while a similar expan-
sion is derived for (φ − V ) by starting from a convolution relation analogous to (2.40) and
by noting that κaB is also a small parameter. This provides

IR(Lp
a ) + IR(Le

1) − β(φ(Lp
a ,Le

1) − V (Lp
a ,Le

1))

= βe2κ2

4

∫ 1

0
ds

∫ 1

0
dt[2|r + λeξ 1(t) − R − λpξ a(s)| − λe|ξ 1(t) − ξ 1(s)|

− λp|ξ a(t) − ξ a(s)|] + βe2κO((κλ)2). (A.14)

In (A.14), terms proportional to βe2κ cancel out, as well as terms proportional to βe2κ2|r −
R| which do not depend on loop shapes.
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Using (A.14) in (A.13), the functional integrations over loop shapes can be rewritten in
terms of matrix elements of Gibbs operators. For instance, the integral associated with the
first term exp(−βV (Lp

a ,Le
1)) in truncated Mayer coefficient BT (a,1) can be rewritten as

2z2e2κ2

βΛ

∫
dRdrdR1dR2dr1dr2

×
∫ β

0
dτ1

∫ τ1

0
dτ2〈Rr| exp[−(β − τ1)H1,1]|R1r1〉

× 〈R1r1| exp[−(τ1 − τ2)H1,1]|R2r2〉〈R2r2| exp[−τ2H1,1]|Rr〉
× [2|r2 − R1| − |r2 − r1| − |R2 − R1|] (A.15)

discarding terms of order βe2κO((κλ)2). Next subtracted terms in BT (a,1) are rewritten
similarly to (A.15) where imaginary-time evolution operators are associated with purely
kinetic Hamiltonian H1,0 + H0,1. At low temperatures, such terms become exponentially
smaller than (A.15), the behavior of which is controlled by atomic groundstate contributions.
That behavior is determined by starting with decomposition H1,1 = −�

2ΔR∗/(2M) + Hpe.
An eigenstate of H1,1 reduces then to the product of a plane wave exp(iK · R∗)/Λ1/2 for
position R∗ = (mpR + mer)/M of the atom mass center, times an internal wave function
ψp(r∗) for relative position r∗ = r−R, while its energy reads �

2K2/(2M)+E
(p)

H . For bound
states, p → (n, l,m) where n is the usual quantum principal number (E(p)

H = EH /n2, 1 ≤ n),
l is the orbital number (0 ≤ l ≤ n − 1) and m is the azimuthal number −l ≤ m ≤ l (0 →
(1,0,0) denotes the ground state); for diffusive states, p → (k, l,m) where k parametrizes
the positive energy E

(p)

H = �
2k2/(2m) while l and m are again the orbital and azimuthal

numbers with 0 ≤ l (the precise forms of the corresponding ψp’s are given in Ref. [42]
for instance). After changing proton and electron positions in favor of their mass center
and relative particle counterparts in (A.15), the matrix elements are evaluated by suitable
insertions of closure relation for the basis made with previous eigenstates. The resulting
integrals over τ1 and τ2 are readily performed for each set of involved eigenstates. According
to the scaling prescriptions defined in Sect. 3, integral (A.13) is then rewritten as (3.19) plus
terms which decay exponentially faster than ρ∗ exp(βEH), while screening function S3(1,1)

reads

S3(1,1) =
√

2(β|EH |)1/2

64π5
exp(−βEH)

{
4
∫

dKdQ
sinh(K · Q)

K · Q
exp(−(K2 + Q2)/2)

×
∫

dXdr∗
1dr∗

2 exp(−2iK · X)|ψ0(r∗
1)|2|ψ0(r∗

2)|2

×
[

2

∣∣∣∣

(
2β|EH |m

M

)1/2

X + me

M
r∗

1 + mp

M
r∗

2

∣∣∣∣

−
∣∣∣∣

(
2β|EH |m

M

)1/2

X − mp

M
r∗

1 + mp

M
r∗

2

∣∣∣∣

−
∣∣∣∣

(
2β|EH |m

M

)1/2

X + me

M
r∗

1 − me

M
r∗

2

∣∣∣∣

]
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+
∑

p �=0

∫
dKdQ

exp(−K2/2)

β(E
(p)

H − EH) + Q2/2 − K2/2

×
∫

dXdr∗
1dr∗

2 exp(i(K − Q) · X)

× ψ0(r
∗
1)ψ0(r∗

2)ψp(r∗
1)ψp(r∗

2)

[
2

∣∣∣∣

(
2β|EH |m

M

)1/2

X + me

M
r∗

1 + mp

M
r∗

2

∣∣∣∣

−
∣∣∣∣

(
2β|EH |m

M

)1/2

X − mp

M
r∗

1 + mp

M
r∗

2

∣∣∣∣

−
∣∣∣∣

(
2β|EH |m

M

)1/2

X + me

M
r∗

1 − me

M
r∗

2

∣∣∣∣

]}
. (A.16)

In (A.16), all integration variables are dimensionless, in particular r∗
i is expressed in units of

aB . Moreover, the sum over diffusive states must be understood as an integral over k from 0
to ∞ and a discrete sum over l and m. When β → ∞, S3(1,1) behaves as

S3(1,1) ∼ cat

8π3/2(β|EH |)1/2
exp(−βEH) (A.17)

with pure numerical constant

cat =
∑

p �=0

|EH |
E

(p)

H − EH

∫
dYdr∗

1dr∗
2

exp(−|Y|)
|Y| ψ0(r

∗
1)ψ0(r∗

2)ψp(r∗
1)ψp(r∗

2)

×
[

2

∣∣∣∣

(
m|EH |

M(E
(p)

H − EH )

)1/2

Y + me

M
r∗

1 + mp

M
r∗

2

−
∣∣∣∣

(
m|EH |

M(E
(p)

H − EH)

)1/2

Y − mp

M
r∗

1 + mp

M
r∗

2

∣∣∣∣

−
∣∣∣∣

(
m|EH |

M(E
(p)

H − EH)

)1/2

Y + me

M
r∗

1 − me

M
r∗

2

∣∣∣∣

]
. (A.18)

Notice that only the second term (
∑

p �=0 · · ·) in (A.16) contributes to asymptotic behavior
(A.17) (the first term provide contributions smaller by a factor ln(β|EH |)/(β|EH |) as a
consequence of the spherical symmetry of groundstate wavefunction ψ0(r∗) = ψ0(r

∗)). An
accurate simplified expression for cat can be derived by setting m/M = me/M = 0 and
mp/M = 1 in agreement with numerical value of ratio me/mp � 1/1850, i.e.

cat � −4π
∑

p �=0

|EH |
E

(p)

H − EH

∫
dr∗

1dr∗
2ψ0(r

∗
1)ψ0(r∗

2)ψp(r∗
1)ψp(r∗

2)|r∗
1 − r∗

2| (A.19)

which provides cat � 10.1.
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Appendix B: Low-Temperature Behavior of Few-Body Partition Functions

B.1 Behavior of Z(1,1)

Two-body proton-electron partition function Z(1,1) reads

Z(1,1) = 4
∫

dx〈x|[exp(−βHpe)]TMayer|x〉, (B.1)

where reduced Hamiltonian Hpe describes a single particle with mass m submitted to attrac-
tive Coulomb potential Vpe(x) = −e2/|x|. Here, for the sake of notational convenience, we
set x = r∗, while z will denote a complex number. The integral over x can be splitted into
two parts, |x| < βe2 and x > βe2, the contributions of which are determined as follows.

For |x| < βe2, truncated Mayer operator [exp(−βHpe)]TMayer is replaced by its definition
(3.14) in (B.1). The contribution of second term in (3.14), as well as those of next terms
involving imaginary-time evolutions of Vpe with kinetic Hamiltonian Kpe, are readily com-
puted in terms of elementary functions by exploiting the Gaussian nature of matrix elements
of exp(−βKpe). Such contributions are bounded by a power of β . The contribution of first
term in (3.14) is analyzed by introducing the Green function Ĝ(x,y; z) defined as the ma-
trix elements of resolvent (z + Hpe)

−1. That function is the solution of partial differential
equation

(
− �

2

2m
Δx − e2

|x| + z

)
Ĝ(x,y; z) = δ(x − y), (B.2)

with suitable boundary conditions [36]. Its exact expression reads [36]

Ĝ(x,y; z) = mΓ (1 − iν)

2π�2|x − y| [Wiν,1/2(−ikd+)Ṁiν,1/2(−ikd−)

− Ẇiν,1/2(−ikd+)Miν,1/2(−ikd−)], (B.3)

with k = (−2mz/�
2)1/2 (�(k) > 0), ν = 1/(kaB), d+ = |x| + |y| + |x − y| and d− =

|x| + |y| − |x − y|, while Γ (u) is the familiar gamma-function and Wiν,1/2(u), Miν,1/2(u)

are Whittaker functions [31] (Ẇiν,1/2(u) = ∂Wiν,1/2(u)/∂u, Ṁiν,1/2(u) = ∂Miν,1/2(u)/∂u).
Green function Ĝ(x,y; z) is analytical in z in the whole complex plane, except on the nega-
tive real axis (�(z) ≤ 0, �(z) = 0) which is a cut line, and also at z = zn = −EH /n2 (n ≥ 1)
which are simple poles (of course, such singularities are controlled by the spectrum of Hpe).
When x → y, Ĝ(x,y; z) diverges as m/(2π�

2|x − y|), as shown by expanding Whittaker
functions for arguments close to −2ik|x|. That 1/|x − y|-behavior, is also displayed by free
Green function Ĝ0(x,y; z) = m exp(ik|x − y|)/(2π�

2|x − y|), and it can be interpreted by
quoting that (B.2) reduces to Poisson equation for |x − y| small. It is convenient to define

Ĥ (x,y; z) = Ĝ(x,y; z) − Ĝ0(x,y; z) +
∫

drĜ0(x, r; z)Vpe(|r|)Ĝ0(r,y; z)

=
∫

dr1dr2Ĝ0(x, r1; z)Vpe(|r1|)Ĝ0(r1, r2; z)Vpe(|r2|)Ĝ(r2,y; z) (B.4)

where the second equality follows from a standard identity for interacting and free Green
functions. That function Ĥ (x,y; z) has the same analytical properties as Ĝ(x,y; z). Using
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above expansions of Whittaker functions, we find that Ĥ (x,x; z) reads

Ĥ (x,x; z) = −imkΓ (1 − iν)

2π�2

[
2Ẇiν,1/2Ṁiν,1/2 − Ẅiν,1/2Miν,1/2

− Wiν,1/2M̈iν,1/2

]
(−2ik|x|) − imk

2π�2

− m2e2

4π2�4

∫
dr

exp(2ik|x − r|)
r|x − r|2 . (B.5)

Notice that, contrarily to Ĝ − Ĝ0 which diverges as −2m2e2 ln(|k||x|)/(π�
4) when x → 0,

Ĥ (x,x; z) remains finite at x = 0 thanks to the addition of the integral of Ĝ0VpeĜ0

in (B.4).
Since Ĝ(x,y; z) is nothing but the Laplace transform with respect to β of density matrix

〈x| exp(−βHpe)|y〉, the standard inversion formula provides

〈x| exp(−βHpe)|y〉 = 1

2iπ

∫

Dσ

dz exp(βz)Ĝ(x,y; z) (B.6)

where Dσ is any straight line parallel to imaginary axis and which cuts real axis at σ > −EH .
Inserting decomposition of Ĝ in terms of Ĝ0, Vpe and Ĥ into (B.6), we find that the contribu-
tion of terms involving Ĝ0 give raise to free density matrix 〈x| exp(−βKpe)|y〉 = exp(−|x−
y|2/(2λ2

pe))/(2πλ2
pe)

3/2. The resulting expression of 〈x| exp(−βHpe)|y〉 can be specified to
diagonal elements x = y because Ĥ (x,x; z) is finite. The integral of Ĥ (x,x; z) exp(βz)

along Dσ is then transformed by applying Cauchy’s theorem with contour Cσ,δ shown in
Fig. 13 (−EH/4 < δ < −EH ). Function Ĥ (x,x; z) exp(βz) is analytical inside Cσ,δ ex-
cept at z = z1 = −EH which is a simple pole with residue |ψ0(x)|2 exp(−βEH ). Moreover,
it satisfies Jordan’s lemma on the circular parts of Cσ,δ which connect Dδ to Dσ , so the
corresponding parts of the contour integral vanish when the radius is sent to infinity. This
provides

〈x| exp(−βHpe)|x〉

= |ψ0(x)|2 exp(−βEH) − 1

2iπ

∫

Dδ

dz exp(βz)Ĥ (x,x; z)

+ 1

(2πλ2
pe)

3/2

[
1 + βe2

|x|
∫ 1

0
dsΦ(|x|/(√2s(1 − s)λpe))

]
(B.7)

where Φ is the familiar Error function [31]. Last term in (B.7) is bounded by a power of β .
Along Dδ , index iν of Whittaker functions follows a closed curve in complex plane which
cuts real axis at non-strictly positive integers. At the same time, their argument u = −2ik|x|
remains inside sector −3π/8 < arg(u) < 3π/8. Consequently, |Ĥ (x,x; z)| remains bounded
by a constant when z runs along Dδ . The modulus of the corresponding integral in (B.7) is
then bounded by a power of β times exp(βδ). Taking into account above power-law bounds
for the contributions of truncated terms in [exp(−βHpe)]TMayer, and noting that ψ0(x) decays
exponentially fast for |x| > βe2, we eventually obtain

∫

|x|<βe2
dx〈x|[exp(−βHpe)]TMayer|x〉 = exp(−βEH), (B.8)
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Fig. 13 Path in complex plane

discarding additional terms which are exponentially smaller than exp(−βEH) when
β → ∞.

For |x| > βe2, it is convenient to use Feynman-Kac expression of 〈x|[exp(−β ×
Hpe)]TMayer|x〉. Within the variable change x = βe2v, the corresponding integral is rewritten
as

∫

|x|>βe2
dx〈x|[exp(−βHpe)]TMayer|x〉

= 1

(2π)3/2

(
βe2

λpe

)3 ∫

|v|>1
dv

∫
D(ξ)

×
[

exp

(∫ 1

0
ds

∣∣∣∣v + λpe

βe2
ξ(s)

∣∣∣∣
−1)

− 1 −
∫ 1

0
ds

∣∣∣∣v + λpe

βe2
ξ(s)

∣∣∣∣
−1

− 1

2

(∫ 1

0
ds

∣∣∣∣v + λpe

βe2
ξ(s)

∣∣∣∣
−1)2

− 1

6

(∫ 1

0
ds

∣∣∣∣v + λpe

βe2
ξ(s)

∣∣∣∣
−1)3]

. (B.9)

When β → ∞, ratio λpe/βe2 vanishes. Then, potential |v + λpe

βe2 ξ(s)|−1 can be merely re-
placed by |v| because the mean extension of ξ(s) is of order 1. The corresponding functional
integral over ξ(s) reduces to 1 by normalization of Wiener measure D(ξ), and the remaining
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integral over v is a pure number. Thus, the integral in the l.h.s. of (B.9) behaves as a power
of β , and it becomes exponentially smaller than (B.8) when β → ∞. This implies

Z(1,1) = 4 exp(−βEH) (B.10)

discarding terms which are exponentially smaller when β → ∞. Next corrections to that
leading behavior arising from excited atomic states, can be readily obtained within a similar
approach by adjusting the position δ between two successive poles, i.e. zn+1 < δ < zn with
n > 1.

B.2 Behavior of Z(1,2)

The low-temperature behavior of Z(1,2), which involves one proton and two electrons,
is determined by a straightforward extension of previous methods applied to Z(1,1). If an
exact expression of three-body Green function is not available, its main properties of interest
can be guessed, under rather weak assumptions, by exploiting relations and analogies with
its free counterpart, as well as known results on the spectrum of H1,2. Such properties appear
to be quite natural extensions of the exact behaviors observed in the two-body case.

Let R = (mpRa + mer1 + mer2)/MH− be the position of center of mass (MH− = mp +
2me), while x1 = (r1 − r2)/

√
2 and x2 = (mp/MH−)1/2(r1 + r2 − 2Ra)/

√
2 are the reduced

variables. After expressing H1,2 in terms of those variables, we find that three-body partition
function Z(1,2) can be rewritten as

Z(1,2) = 2
∫

dx1dx2{2〈x1x2| exp(−βH ∗
1,2)|x1x2〉

− 〈−x1x2| exp(−βH ∗
1,2)|x1x2〉 + · · ·} (B.11)

with reduced Hamiltonian

H ∗
1,2 = − �

2

2me

Δx1 − �
2

2me

Δx2 + e2

√
2|x1|

−
√

2e2

|x1 + (MH−/mp)1/2x2|

−
√

2e2

|x1 − (MH−/mp)1/2x2| . (B.12)

Off-diagonal matrix elements in the r.h.s. of (B.11) are associated with the exchange of
the electrons. First potential term in (B.12) describes Coulomb repulsion between those
electrons, while the second and third ones account for Coulomb attractions between the
proton and each electron. In the double integral involved in (B.11), we make a partition
of space integration into three domains Ω(i) (i = 0,1,2), such that i, and only i, sides of
triangle (0,x1,x2) are smaller than βe2 in Ω(i).

For x1,x2 inside Ω(2), we express matrix elements of exp(−βH ∗
1,2) as inverse Laplace

transforms of Green function Ĝ(x1,x2;y1,y2; z) solution of

(H ∗
1,2 + z)Ĝ(x1,x2;y1,y2; z) = δ(x1 − y1)δ(x2 − y2) (B.13)

with suitable boundary conditions. That Green function is analytical in z in the whole com-
plex plane, except on a part of real axis with �(z) < −EH− , while z1 = −EH− is a simple
(isolated) pole with residue ψ0(x1,x2)ψ0(y1,y2) (ψ0 is the groundstate wavefunction of
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H ∗
1,2 with energy EH− ). For a given z not close to its singularities, Ĝ(x1,x2;y1,y2; z) dis-

plays a position-dependence analogous to that of free Green function Ĝ0(x1,x2;y1,y2; z)
solution of Helmholtz equation in six dimensions. In particular, for xi close to yi , potential
terms in (B.13) can be omitted and Ĝ(x1,x2;y1,y2; z) also diverges as 1/[(x1 −y1)

2 + (x2 −
y2)

2]2, i.e. the Coulomb potential in six dimensions. In order to handle such divergences for
diagonal matrix elements, we consider identity

Ĝ(x1,x2;y1,y2; z)
= Ĝ0(x1,x2;y1,y2; z)

−
∫

dr1dr2Ĝ0(x1,x2; r1, r2; z)V ∗
1,2(r1, r2)Ĝ(r1, r2;y1,y2; z) (B.14)

where V ∗
1,2 is the potential part of H ∗

1,2. Successive iterations of formula (B.14) gen-
erate the perturbative expansion of Ĝ(x1,x2;y1,y2; z) in powers of V ∗

1,2. We define
Ĥ (x1,x2;y1,y2; z) as Ĝ(x1,x2;y1,y2; z) minus the first six terms (up to order (V ∗

1,2)
5 in-

cluded) of that expansion. Similarly to (B.4), Ĥ has the same analytical properties as Ĝ,
while Ĥ (x1,x2;x1,x2; z) is now finite. After inserting the expression of Ĝ in terms of Ĝ0,
V ∗

1,2 and Ĥ into the inversion formula for diagonal matrix element of exp(−βH ∗
1,2), we

find that terms built with Ĝ0 and V ∗
1,2 are bounded by powers of β . For dealing with the

contribution of Ĥ , we introduce a closed contour Cσ,δ in complex plane similar to that
shown in Fig. 13, with z2 < δ < z1 and −z2 the first singularity of Ĥ below z1. Along
that contour, z stays at a finite distance at any singularity of Ĥ . Also, for |z| large, in
the expression of Ĥ as a spatial integral of Ĝ0V

∗
1,2Ĝ0 · · ·V ∗

1,2Ĝ (similar to that involved
in (B.4)), Ĝ can be replaced by Ĝ0. Therefore, Ĥ goes to zero as a power of k, as shown
by variable changes ri → |k|ri (integrals over the ri ’s do converge thanks to exponen-
tially decaying factors exp(ik|ri − rj |) arising from the Ĝ0’s). Hence, we conclude that
|Ĥ (x1,x2;x1,x2; z)| remains bounded along Dδ , while Jordan’s lemma applies to the inte-
gral of Ĥ (x1,x2;x1,x2; z) exp(βz) upon the circular parts of Cσ,δ . This provides

2〈x1x2| exp(−βH ∗
1,2)|x1x2〉 = 2|ψ0(x1,x2)|2 exp(−βEH−) (B.15)

discarding terms which are exponentially smaller. Within similar methods, we can also es-
timate the off-diagonal matrix element 〈−x1x2| exp(−βH ∗

1,2)|x1x2〉. Contributions of terms
involving Ĝ0’s and V ∗

1,2’s are readily bounded by powers of β by rescaling positions in units
of λe . Contribution of Ĥ is treated as above since Ĥ (−x1,x2;x1,x2; z) is bounded along
Dδ and decays sufficiently fast for |z| large. After using ψ0(−x1,x2) = ψ0(x1,x2) (H ∗

1,2 is
invariant under transformation x1 → −x1 at fixed x2), we find

〈−x1x2| exp(−βH ∗
1,2)|x1x2〉 = |ψ0(x1,x2)|2 exp(−βEH−), (B.16)

discarding terms which are exponentially smaller. Next terms · · · in the r.h.s. of (B.11),
which arise from truncation in [exp(−βH1,2)]TMayer, can be also estimated by similar tech-
niques. For instance, term

∫ β

0
dτ exp[−(β − τ)(H1,1 + H0,1)]Vat,e exp[−τ(H1,1 + H0,1)] (B.17)
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provides a contribution which can be rewritten as the inverse Laplace transform of

∫
dy1dy2〈x1x2|(z + H ∗

pe,e)
−1|y1y2〉Vat,e(y1,y2)〈y1y2|(z + H ∗

pe,e)
−1|x1x2〉 (B.18)

with

H ∗
pe,e = − �

2

2me

Δx1 − �
2

2me

Δx2 −
√

2e2

|x1 + (MH−/mp)1/2x2| (B.19)

and

Vat,e(x1,x2) = e2

√
2|x1|

−
√

2e2

|x1 − (MH−/mp)1/2x2| . (B.20)

Green function defined as matrix elements of (z + H ∗
pe,e)

−1, is analytical with respect to z

in the whole complex plane, except on part �(z) ≤ −EH of the real axis. In the Laplace
inversion formula, we introduce a contour analogous to that of Fig. 13 with δ > −EH . We
also define a regular part of 〈x1x2|(z+H ∗

pe,e)
−1|y1y2〉 which remains finite at xi = yi . When

z follows Dδ , �(k) remains larger than a given positive constant, so previous regular part
is bounded by an exponentially decaying function of [(x1 − y1)

2 + (x2 − y2)
2]1/2 (for large

separations of the arguments, Coulomb potential terms vanish so Green functions behave
as their free counterparts which decay exponentially on a scale (�(k))−1). This implies that
(B.18) remains bounded by a constant along Dδ . Contribution of (B.17) is then found to be
bounded by a power of β times exp(βδ), with δ arbitrarily close to −EH . Since −EH <

−EH− , that contribution is exponentially smaller than (B.15) and (B.16). Contributions of
all the other truncated terms in [exp(−βH1,2)]TMayer behave similarly because groundstate
energies of Hamiltonians (H1,0 + H0,2) and (H1,0 + H0,1 + H0,1) (which both vanish) are
strictly larger than EH− . Since volume of Ω(2) is bounded by a constant times (βe2)6 on
one hand, while ψ0(x1,x2) decays exponentially fast for |xi | large on another hand, we
eventually obtain

∫

Ω(2)

dx1dx2{2〈x1x2| exp(−βH ∗
1,2)|x1x2〉 − 〈−x1x2| exp(−βH ∗

1,2)|x1x2〉 + · · ·}

= exp(−βEH−) (B.21)

discarding terms which are exponentially smaller.
For x1,x2 inside Ω(1), two of three distances |x1|, |x1 − x2|, |x2| are larger than βe2. For

instance, we may have both |x1| and |x1 −x2| larger than βe2, while |x2| is smaller than βe2.
For such configurations, both distances |x1| and |x1 − (MH−/mp)1/2x2| are larger than βe2.

In the Feynman-Kac formula for 〈x1x2| exp(−βH ∗
1,2)|x1x2〉, potentials

∫ 1
0 dse2/

√
2|x1 +

λeξ 1(s)| and − ∫ 1
0 ds

√
2e2/|x1 + λeξ 1(s) − (MH−/mp)1/2(x2 + λeξ 2(s))| can then be re-

placed by their classical counterparts e2/
√

2|x1| and −√
2e2/|x1 − (MH−/mp)1/2x2| re-

spectively, because λe/βe2 goes to zero when β diverges. Thus, 〈x1x2| exp(−βH ∗
1,2)|x1x2〉

behaves as

〈x1x2| exp(−βH ∗
pe,e)|x1x2〉 exp(−βVat,e(x1,x2)) (B.22)

at leading order, where H ∗
pe,e and Vat,e(x1,x2) are given by (B.19) and (B.20) respectively.

A similar estimation holds for truncated terms in [exp(−βH1,2)]TMayer built with powers of
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Vat,e , so the corresponding full contribution integrated upon considered configurations be-
haves as

2
∫

|x1|,|x1−x2|>βe2,|x2|<βe2
dx1dx2〈x1x2| exp(−βH ∗

pe,e)|x1x2〉

×
[

exp(−βVat,e(x1,x2)) + βVat,e(x1,x2) − 1

2
(βVat,e(x1,x2))

2

+ 1

6
(βVat,e(x1,x2))

3

]
. (B.23)

According to above properties of Green functions, 〈x1x2| exp(−βH ∗
pe,e)|x1x2〉 is bounded

by some power of β times exp(βδ) with −EH < δ < −EH− . Therefore, integral (B.23) is
also bounded by a power of β times exp(βδ), because purely classical integral

∫

|x1|,|x1−x2|>βe2,|x2|<βe2
dx1dx2

[
exp(−βVat,e(x1,x2)) + βVat,e(x1,x2)

− 1

2
(βVat,e(x1,x2))

2 + 1

6
(βVat,e(x1,x2))

3

]
(B.24)

is proportional to (βe2)6 as shown by rescaling xi in units of βe2. A similar analysis ap-
plies to the contributions of the other terms in [exp(−βH1,2)]TMayer. When off-diagonal
matrix elements are involved, we use bounds inferred from properties of Green func-
tions, which decay exponentially fast with respect to relative distances between differ-
ent arguments. For instance, |〈−x1x2| exp(−βH ∗

1,2)|x1x2〉| is bounded by a constant times
exp(−βEH−) exp(−c|x1|/aB) with c > 0, so

−
∫

|x1|,|x1−x2|>βe2,|x2|<βe2
dx1dx2〈−x1x2| exp(−βH ∗

1,2)|x1x2〉 (B.25)

decays exponentially faster than exp(−βEH−). Previous analysis can be also repeated
for the other configurations belonging to Ω(1), i.e. {|x2|, |x1 − x2| > βe2, |x1| < βe2} and
{|x1|, |x2| > βe2, |x1 − x2| < βe2}. We eventually find that

∫

Ω(1)

dx1dx2{2〈x1x2| exp(−βH ∗
1,2)|x1x2〉 − 〈−x1x2| exp(−βH ∗

1,2)|x1x2〉 + · · ·} (B.26)

decays exponentially faster than exp(−βEH−).
For x1,x2 inside Ω(0), all distances |x1|, |x1 − x2|, and |x2| are larger than βe2. For

diagonal matrix elements, potential parts can be treated classically at leading order, as im-
mediately seen from Feynman-Kac formula by noting that λe/βe2 vanishes. Such matrix
elements then behave as their free counterparts times classical Boltzmann factors. The cor-
responding full contribution integrated upon Ω(0) is shown to be proportional to (βe2/λe)

6,
as shown by variable changes xi = βe2vi . The contribution of remaining terms with off-
diagonal matrix elements decays exponentially faster than exp(−βEH−), thanks to the ex-
istence of bounds which are proportional to exp(−βEH−) and decay exponentially fast for
large separations (over a finite length scale proportional to aB ). Thus, and like (B.26), con-
tribution of Ω(0) to Z(1,2) also decays exponentially faster than exp(−βEH−), so we even-
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tually obtain

Z(1,2) = 2 exp(−βEH−) (B.27)

discarding terms which are exponentially smaller when β → ∞.

B.3 Behaviors of Z(2,1), Z(2,2), . . .

The low-temperature behaviors of Z(2,1) and Z(2,2) can be also determined by previous
methods introduced for studying Z(1,1) and Z(1,2). Again, analytic properties of Green
functions associated with resolvents (z + H ∗

2,1)
−1 and (z + H ∗

2,2)
−1 play a crucial role in the

derivations. Such functions are analytical in the whole complex plane, except on a part of
real axis with �(z) < −EH+

2
or �(z) < −EH2 , while z1 = −EH− or z1 = −EH2 is a simple

(isolated) pole. Along integration contours analogous to that described in Fig. 13, they can
be bounded as above, within quite plausible arguments based on the properties of their free
counterparts, solutions of Helmholtz equation in six or nine dimensions. Integration space
upon reduced positions is splitted into several parts according to the values of relative dis-
tances compared to βe2. The parts inside which all relative distances are smaller than βe2,
provide the leading contributions, i.e.

Z(2,1) = 2 exp(−βEH+
2
) (B.28)

and

Z(2,2) = exp(−βEH2) (B.29)

discarding terms which are exponentially smaller when β → ∞.
The analysis can be applied to any partition function Z(Np,Ne). However, when the

infimum of reduced Hamiltonian H ∗
Np,Ne

is not separated from the rest of the spectrum (i.e. in
the corresponding groundstate, the Np protons and the Ne electrons are not binded together),
the first singularity (with the largest real part) z1 = −E

(0)
Np,Ne

of Green function associated

with (z + H ∗
Np,Ne

)−1, is a branching point which is not isolated from other singularities.
Then, contour Cσ,δ cuts real axis at δ > z1, so the previous methods show that |Z(Np,Ne)|
is bounded by a power of β times exp(βδ). A more detailed analysis of the behavior of Green
function for z close to z1 is then required for determining the precise leading behavior of
Z(Np,Ne). Nevertheless, since previous bound is valid for δ arbitrarily close to z1, it is quite
reasonable to assume that Z(Np,Ne) then behaves as a power of β times exp(−βE

(0)
Np,Ne

)

(such a behavior is indeed observed for Z(2,0) with E
(0)

2,0 = 0).

Appendix C: Leading Contributions of Interactions between Atoms and Ionized
Charges

C.1 Expression of W(1,1|1,1)

The low-temperature behavior of bare contributions of Figs. 8b and 8c, is determined along
similar lines as that of polarization contribution (A.13). The integrals of interest are again
expressed in terms of the atom mass centers and of the reduced variables. Matrix elements
are also evaluated via insertions of the closure relation for a suitable basis. Each eigenstate
in that basis, is the product of plane waves describing mass center motions, times atomic
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internal wavefunctions. The resulting integrals over times τi are readily performed for each
set of involved eigenstates. According to the scaling prescriptions defined in Sect. 3, full
bare contribution of Figs. 8b and 8c is then rewritten as (3.41) plus terms which decay expo-
nentially faster than ρ∗ exp(βEH). Like Z(1,1) or S3(1,1), function W(1,1|1,1) is deter-
mined by atomic groundstate contributions, and further contributions of excited states might
be bounded by methods similar to that exposed in Appendix B:. Similarly to expression
(A.16) for S3(1,1), W(1,1|1,1) reduces to the product exp(−2βEH) of atomic groundstate
Boltzmann factors, times a function of β|EH | which remains bounded by a power law at
low temperatures. Its asymptotic form when β → ∞ is given by (3.42), where cat,at is the
pure numerical coefficient

cat,at = 2

π

{
M

m

∫
dK

|D(at,at)

00,00 (K)|2
K6

+
∑

(p1,p2)�=(0,0)

∫
dK

2|EH |
(E

(p1)

H + E
(p2)

H − 2EH + �2K2/(Ma2
B))

|D(at,at)

0p1,0p2
(K)|2

K4

}

× −1

π3

{(
M

m

)2 ∫
dKdQ

D
(at,at)

00,00 (K)D
(at,at)

00,00 (Q − K)D
(at,at)

00,00 (−Q)

K4Q4|K − Q|2

+
∑

(p1,p2,p3,p4)�=(0,0,0,0)

∫
dKdQ

2|EH |
(E

(p1)

H + E
(p2)

H − 2EH + �2K2/(Ma2
B))

× 2|EH |
(E

(p3)

H + E
(p4)

H − 2EH + �2Q2/(Ma2
B))

× D
(at,at)

0p1,0p2
(K)D(at,at)

p1p3,p2p4
(Q − K)D

(at,at)

p30,p40(−Q)

K2Q2|K − Q|2
}
. (C.1)

In (C.1), K and Q are dimensionless (units a−1
B ) wavenumbers, while function D

(at,at)

0p1,0p2
(K)

reduces to

D
(at,at)

0p1,0p2
(K) = 〈ψ0| exp

(
−i

m

me

K · r∗
)

|ψp1〉〈ψ0| exp

(
i

m

me

K · r∗
)

|ψp2〉

+ 〈ψ0| exp

(
i

m

mp

K · r∗
)

|ψp1〉〈ψ0| exp

(
−i

m

mp

K · r∗
)

|ψp2〉

− 〈ψ0| exp

(
−i

m

me

K · r∗
)

|ψp1〉〈ψ0| exp

(
−i

m

mp

K · r∗
)

|ψp2〉

− 〈ψ0| exp

(
i

m

mp

K · r∗
)

|ψp1〉〈ψ0| exp

(
i

m

me

K · r∗
)

|ψp2〉. (C.2)

C.2 Expressions of W(1,1|1,0) and W(1,1|0,1)

A straightforward extension of previous methods provides the low-temperature behaviors
of bare contributions of Figs. 9a–f. Using again the scaling prescriptions defined in Sect. 3,
the corresponding full bare contribution is then rewritten as (3.45) plus terms which decay
exponentially faster than ρ∗ exp(βEH). Functions W(1,1|1,0) and W(1,1|0,1) are also de-
termined by atomic groundstate contributions. They behave as exp(−βEH) times functions
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of β|EH | which remain bounded by power laws. Their asymptotic forms when β → ∞ are
given by 3.46, where pure numerical constants reduce to

c
(2)
at,α = 2

π

{
2mαM

m(mα + M)

∫
dK

|D(at,α)

00 (K)|2
K6

+
∑

p1 �=0

∫
dK

2|EH |
(E

(p1)

H − EH + �2K2/(2Ma2
B) + �2K2/(2mαa

2
B))

|D(at,α)

0p1
(K)|2

K4

}

× −1

π3

{(
2mαM

m(mα + M)

)2 ∫
dKdQ

D
(at,α)

00 (K)D
(at,α)

00 (Q − K)D
(at,α)

00 (−Q)

K4Q4|K − Q|2

+
∑

(p1,p2)�=(0,0)

dKdQ
2|EH |

(E
(p1)

H − EH + �2K2/(2Ma2
B) + �2K2/(2mαa

2
B))

× 2|EH |
(E

(p2)

H − EH + �2Q2/(2Ma2
B) + �2Q2/(2mαa

2
B))

× D
(at,α)

0p1
(K)D(at,α)

p1p2
(Q − K)D

(at,α)

p20 (−Q)

K2Q2|K − Q|2
}
, (C.3)

with

D
(at,p)

0p1
(K) = −D

(at,e)

0p1
(K)

= 〈ψ0| exp

(
−i

m

me

K · r∗
)

|ψp1〉 − 〈ψ0| exp

(
i

m

mp

K · r∗
)

|ψp1〉. (C.4)
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